IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v490y2018icp139-147.html
   My bibliography  Save this article

Dynamic optimal strategies in transboundary pollution game under learning by doing

Author

Listed:
  • Chang, Shuhua
  • Qin, Weihua
  • Wang, Xinyu

Abstract

In this paper, we present a transboundary pollution game, in which emission permits trading and pollution abatement costs under learning by doing are considered. In this model, the abatement cost mainly depends on the level of pollution abatement and the experience of using pollution abatement technology. We use optimal control theory to investigate the optimal emission paths and the optimal pollution abatement strategies under cooperative and noncooperative games, respectively. Additionally, the effects of parameters on the results have been examined.

Suggested Citation

  • Chang, Shuhua & Qin, Weihua & Wang, Xinyu, 2018. "Dynamic optimal strategies in transboundary pollution game under learning by doing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 139-147.
  • Handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:139-147
    DOI: 10.1016/j.physa.2017.08.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117307276
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.08.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bertinelli, Luisito & Camacho, Carmen & Zou, Benteng, 2014. "Carbon capture and storage and transboundary pollution: A differential game approach," European Journal of Operational Research, Elsevier, vol. 237(2), pages 721-728.
    2. Slim Ben Youssef, 2009. "Transboundary pollution, R&D spillovers and international trade," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 43(1), pages 235-250, March.
    3. D. W. K. Yeung, 2007. "Dynamically Consistent Cooperative Solution in a Differential Game of Transboundary Industrial Pollution," Journal of Optimization Theory and Applications, Springer, vol. 134(1), pages 143-160, July.
    4. Rivers, Nic & Jaccard, Mark, 2006. "Choice of environmental policy in the presence of learning by doing," Energy Economics, Elsevier, vol. 28(2), pages 223-242, March.
    5. Bramoulle, Yann & Olson, Lars J., 2005. "Allocation of pollution abatement under learning by doing," Journal of Public Economics, Elsevier, vol. 89(9-10), pages 1935-1960, September.
    6. Shoude Li, 2014. "A Differential Game of Transboundary Industrial Pollution with Emission Permits Trading," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 642-659, November.
    7. Nile W. Hatch & David C. Mowery, 1998. "Process Innovation and Learning by Doing in Semiconductor Manufacturing," Management Science, INFORMS, vol. 44(11-Part-1), pages 1461-1477, November.
    8. Li, Shoude & Pan, Xiaojun, 2014. "A dynamic general equilibrium model of pollution abatement under learning by doing," Economics Letters, Elsevier, vol. 122(2), pages 285-288.
    9. Tahvonen, Olli, 1994. "Carbon dioxide abatement as a differential game," European Journal of Political Economy, Elsevier, vol. 10(4), pages 685-705, December.
    10. Benchekroun, Hassan & Ray Chaudhuri, Amrita, 2014. "Transboundary pollution and clean technologies," Resource and Energy Economics, Elsevier, vol. 36(2), pages 601-619.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kar, Saibal & Majumdar, Devleena, 2021. "Transboundary pollution, land use and abatement policy," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 169-175.
    2. Lu Xiao & Huacong Ding & Yu Zhong & Chaojie Wang, 2023. "Optimal Control of Industrial Pollution under Stochastic Differential Models," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    3. Wang, Xinyu & Zhang, Shuhua & Hao, Wenwei, 2022. "Myopic vs. foresighted behaviors in a transboundary pollution game with abatement policy and emission permits trading," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    4. Li, Huiquan & Guo, Genlong, 2019. "A differential game analysis of multipollutant transboundary pollution in river basin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    5. Fangju Jia & Dong‐dong Wang & Kun Zhou & Lianshui Li, 2022. "Differential decision analysis of transboundary pollution considering the participation of the central government," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(6), pages 1684-1703, September.
    6. Jia Xue & Youshi He & Peng Gao & Yin Tang & Hanyang Xu, 2022. "Multi-Agent Evolutionary Game Model: Corporate Low-Carbon Manufacturing, Chinese Government Supervision, and Public Media Investigation," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    7. Li, Shoude & Fu, Tong, 2022. "Abatement technology innovation, worker productivity and firm profitability: A dynamic analysis," Energy Economics, Elsevier, vol. 115(C).
    8. Ni, Jian & Huang, Hongzhi & Wang, Peipei & Zhou, Wei, 2020. "Capacity investment and green R&D in a dynamic oligopoly under the potential shift in environmental damage," Economic Modelling, Elsevier, vol. 88(C), pages 312-319.
    9. Weixin Yang & Yunpeng Yang, 2020. "Research on Air Pollution Control in China: From the Perspective of Quadrilateral Evolutionary Games," Sustainability, MDPI, vol. 12(5), pages 1-23, February.
    10. Li, Shoude & Zhang, Yingxuan, 2023. "Abatement technology innovation and pollution tax design: A dynamic analysis in monopoly," Energy Economics, Elsevier, vol. 119(C).
    11. Enquan Luo & Zuopeng Hu & Shuwen Xiang & Yanlong Yang & Zhijun Hu, 2024. "The Design of Ecological Compensation for Air Pollution Based on Differential Game," Sustainability, MDPI, vol. 16(3), pages 1-14, January.
    12. Li, Liming & Chen, Weidong, 2021. "The impact of subsidies in a transboundary pollution game with myopic players," Omega, Elsevier, vol. 103(C).
    13. Zhonghao Zhang & Tiantian Nie & Yingtao Wu & Jiahui Ling & Danhuang Huang, 2022. "The Temporal and Spatial Distributions and Influencing Factors of Transboundary Pollution in China," IJERPH, MDPI, vol. 19(8), pages 1-15, April.
    14. Xiao, Lu & Liu, Jianyue & Ge, Jinwen, 2021. "Dynamic game in agriculture and industry cross-sectoral water pollution governance in developing countries," Agricultural Water Management, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuhua Chang & Suresh P. Sethi & Xinyu Wang, 2018. "Optimal Abatement and Emission Permit Trading Policies in a Dynamic Transboundary Pollution Game," Dynamic Games and Applications, Springer, vol. 8(3), pages 542-572, September.
    2. Li, Huiquan & Guo, Genlong, 2019. "A differential game analysis of multipollutant transboundary pollution in river basin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    3. Li, Liming & Chen, Weidong, 2021. "The impact of subsidies in a transboundary pollution game with myopic players," Omega, Elsevier, vol. 103(C).
    4. Wenguang Tang & Shuhua Zhang, 2019. "Modeling and Computation of Transboundary Pollution Game Based on Joint Implementation Mechanism," Complexity, Hindawi, vol. 2019, pages 1-18, August.
    5. Jiayi Sun & Deqing Tan, 2023. "Non-cooperative Mode, Cost-Sharing Mode, or Cooperative Mode: Which is the Optimal Mode for Desertification Control?," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 975-1008, March.
    6. Ouardighi, Fouad El & Sim, Jeong Eun & Kim, Bowon, 2016. "Pollution accumulation and abatement policy in a supply chain," European Journal of Operational Research, Elsevier, vol. 248(3), pages 982-996.
    7. Gerlagh , Reyer & Kverndokk , Snorre & Rosendahl , Knut Einar, 2007. "Optimal Timing of Environmental Policy: Interaction Between Environmental Taxes and Innovation Externalities," Memorandum 26/2006, Oslo University, Department of Economics.
    8. Li, Shoude & Ni, Jian, 2016. "A dynamic analysis of investment in process and product innovation with learning-by-doing," Economics Letters, Elsevier, vol. 145(C), pages 104-108.
    9. David W. K. Yeung & Leon A. Petrosyan, 2016. "A Cooperative Dynamic Environmental Game of Subgame Consistent Clean Technology Development," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 1-23, June.
    10. Hao Xu & Deqing Tan, 2023. "Optimal Abatement Technology Licensing in a Dynamic Transboundary Pollution Game: Fixed Fee Versus Royalty," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 905-935, March.
    11. Raouf Boucekkine & Carmen Camacho & Weihua Ruan & Benteng Zou, 2022. "Why and when coalitions split? An alternative analytical approach with an application to environmental agreements," Working Papers halshs-03676670, HAL.
    12. Wang, Xinyu & Sethi, Suresh P. & Chang, Shuhua, 2022. "Pollution abatement using cap-and-trade in a dynamic supply chain and its coordination," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    13. Hao Xu & Ming Luo, 2022. "Optimal Environmental Policy in a Dynamic Transboundary Pollution Game: Emission Standards, Taxes, and Permit Trading," Sustainability, MDPI, vol. 14(15), pages 1-25, July.
    14. David Yeung, 2014. "Dynamically consistent collaborative environmental management with production technique choices," Annals of Operations Research, Springer, vol. 220(1), pages 181-204, September.
    15. Ryle S. Perera & Kimitoshi Sato, 2023. "Ensuring Mutual Benefit in a Trans-boundary Industrial Pollution Control Problem," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 91-128, June.
    16. Reyer Gerlagh & Snorre Kverndokk & Knut Rosendahl, 2009. "Optimal Timing of Climate Change Policy: Interaction Between Carbon Taxes and Innovation Externalities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 369-390, July.
    17. Bowon Kim & Jeong Eun Sim & Caroline Elliott, 2015. "Impacts of government and market on firm’s efforts to reduce pollution," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1062634-106, December.
    18. Guo, Jian-Xin & Zhu, Lei & Fan, Ying, 2016. "Emission path planning based on dynamic abatement cost curve," European Journal of Operational Research, Elsevier, vol. 255(3), pages 996-1013.
    19. Fouad El Ouardighi & Konstantin Kogan & Giorgio Gnecco & Marcello Sanguineti, 2020. "Transboundary pollution control and environmental absorption efficiency management," Annals of Operations Research, Springer, vol. 287(2), pages 653-681, April.
    20. Baogui Xin & Wei Peng & Minghe Sun, 2019. "Optimal Coordination Strategy for International Production Planning and Pollution Abating under Cap-and-Trade Regulations," IJERPH, MDPI, vol. 16(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:139-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.