IDEAS home Printed from https://ideas.repec.org/p/fem/femwpa/2007.35.html
   My bibliography  Save this paper

Optimal Timing of Environmental Policy; Interaction Between Environmental Taxes and Innovation Externalities

Author

Listed:
  • Reyer Gerlagh

    (University of Manchester)

  • Snorre Kverndokk

    (Ragnar Frisch Centre for Economic Research)

  • Knut Einar Rosendahl

    (Statistics Norway)

Abstract

This paper addresses the impact of endogenous technology through research and development (R&D) and learning by doing (LbD) on the timing of environmental policy. We develop two models, the first with R&D and the second with LbD. We study the interaction between environmental taxes and innovation externalities in a dynamic economy and prove policy equivalence between the second-best R&D and the LbD model. Our analysis shows that the difference found in the literature between optimal environmental policy in R&D and LbD models can partly be traced back to the set of policy instruments available, rather than being directly linked to the source of technological innovation. Arguments for early action in LbD models carry over to a second-best R&D setting. We show that environmental taxes should be high compared to the Pigouvian levels when an abatement industry is developing. We illustrate our analysis through numerical simulations on climate change policy.

Suggested Citation

  • Reyer Gerlagh & Snorre Kverndokk & Knut Einar Rosendahl, 2007. "Optimal Timing of Environmental Policy; Interaction Between Environmental Taxes and Innovation Externalities," Working Papers 2007.35, Fondazione Eni Enrico Mattei.
  • Handle: RePEc:fem:femwpa:2007.35
    as

    Download full text from publisher

    File URL: https://feem-media.s3.eu-central-1.amazonaws.com/wp-content/uploads/NDL2007-035.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Karl E. Knapp, 1999. "Exploring Energy Technology Substitution for Reducing Atmospheric Carbon Emissions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 121-143.
    2. de Bovenberg, A Lans & Mooij, Ruud A, 1994. "Environmental Levies and Distortionary Taxation," American Economic Review, American Economic Association, vol. 84(4), pages 1085-1089, September.
    3. Gerlagh, Reyer & Lise, Wietze, 2005. "Carbon taxes: A drop in the ocean, or a drop that erodes the stone? The effect of carbon taxes on technological change," Ecological Economics, Elsevier, vol. 54(2-3), pages 241-260, August.
    4. Dixit, Avinash K & Stiglitz, Joseph E, 1977. "Monopolistic Competition and Optimum Product Diversity," American Economic Review, American Economic Association, vol. 67(3), pages 297-308, June.
    5. Hart, Rob, 2008. "The timing of taxes on CO2 emissions when technological change is endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 194-212, March.
    6. Nordhaus, William D, 1969. "An Economic Theory of Technological Change," American Economic Review, American Economic Association, vol. 59(2), pages 18-28, May.
    7. M. Ha-Duong & M. J. Grubb & J.-C. Hourcade, 1997. "Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement," Nature, Nature, vol. 390(6657), pages 270-273, November.
    8. Rivers, Nic & Jaccard, Mark, 2006. "Choice of environmental policy in the presence of learning by doing," Energy Economics, Elsevier, vol. 28(2), pages 223-242, March.
    9. Manne, Alan & Richels, Richard, 2004. "The impact of learning-by-doing on the timing and costs of CO2 abatement," Energy Economics, Elsevier, vol. 26(4), pages 603-619, July.
    10. Encaoua, D. & Ulph, D., 2000. "Catching-up or Leapfrogging ? The Effects of Competition on Innovation and Growth," Papiers d'Economie Mathématique et Applications 2000.97, Université Panthéon-Sorbonne (Paris 1).
    11. Bramoulle, Yann & Olson, Lars J., 2005. "Allocation of pollution abatement under learning by doing," Journal of Public Economics, Elsevier, vol. 89(9-10), pages 1935-1960, September.
    12. Rosendahl, Knut Einar, 2004. "Cost-effective environmental policy: implications of induced technological change," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1099-1121, November.
    13. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    14. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    15. Robert J. Barro & Paul Romer, 1993. "Economic Growth (1992)," NBER Books, National Bureau of Economic Research, Inc, number barr93-1, March.
    16. Rolf Golombek & Michael Hoel, 2005. "Climate Policy under Technology Spillovers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 31(2), pages 201-227, June.
    17. Grubler, Arnulf & Messner, Sabine, 1998. "Technological change and the timing of mitigation measures," Energy Economics, Elsevier, vol. 20(5-6), pages 495-512, December.
    18. Romer, Paul M, 1987. "Growth Based on Increasing Returns Due to Specialization," American Economic Review, American Economic Association, vol. 77(2), pages 56-62, May.
    19. van der Zwaan, B. C. C. & Gerlagh, R. & G. & Klaassen & Schrattenholzer, L., 2002. "Endogenous technological change in climate change modelling," Energy Economics, Elsevier, vol. 24(1), pages 1-19, January.
    20. Isoard, Stephane & Soria, Antonio, 2001. "Technical change dynamics: evidence from the emerging renewable energy technologies," Energy Economics, Elsevier, vol. 23(6), pages 619-636, November.
    21. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
    22. Bovenberg, A Lans & de Mooij, Ruud A, 1997. "Environmental Levies and Distortionary Taxation: Reply," American Economic Review, American Economic Association, vol. 87(1), pages 252-253, March.
    23. Liski, Matti, 2002. "Taxing average emissions to overcome the shutdown problem," Journal of Public Economics, Elsevier, vol. 85(3), pages 363-384, September.
    24. Kverndokk, Snorre & Rosendahl, Knut Einar, 2007. "Climate policies and learning by doing: Impacts and timing of technology subsidies," Resource and Energy Economics, Elsevier, vol. 29(1), pages 58-82, January.
    25. Hartman, Richard & Kwon, O-Sung, 2005. "Sustainable growth and the environmental Kuznets curve," Journal of Economic Dynamics and Control, Elsevier, vol. 29(10), pages 1701-1736, October.
    26. Marvin B. Lieberman, 1984. "The Learning Curve and Pricing in the Chemical Processing Industries," RAND Journal of Economics, The RAND Corporation, vol. 15(2), pages 213-228, Summer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. André Grimaud & Luc Rouge, 2008. "Environment, Directed Technical Change and Economic Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 41(4), pages 439-463, December.
    2. Tom-Reiel Heggedal, 2008. "On R&D and the undersupply of emerging versus mature technologies," Discussion Papers 571, Statistics Norway, Research Department.
    3. Gerlagh, Reyer & Kverndokk, Snorre & Rosendahl, Knut Einar, 2014. "The optimal time path of clean energy R&D policy when patents have finite lifetime," Journal of Environmental Economics and Management, Elsevier, vol. 67(1), pages 2-19.
    4. Garrone, Paola & Grilli, Luca, 2010. "Is there a relationship between public expenditures in energy R&D and carbon emissions per GDP? An empirical investigation," Energy Policy, Elsevier, vol. 38(10), pages 5600-5613, October.
    5. Ziesemer, Thomas & Michaelis, Peter, 2011. "Strategic environmental policy and the accumulation of knowledge," Structural Change and Economic Dynamics, Elsevier, vol. 22(2), pages 180-191, June.
    6. Gerlagh, Reyer & Kverndokk, Snorre & Rosendahl, Knut Einar, 2008. "Linking Environmental and Innovation Policy," Economic Theory and Applications Working Papers 37847, Fondazione Eni Enrico Mattei (FEEM).
    7. Hart, Rob, 2008. "The timing of taxes on CO2 emissions when technological change is endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 194-212, March.
    8. Geir H. Bjertnæs & Tom-Reiel Heggedal & Karl Jacobsen, 2009. "Knowledge spillovers and the timing of R&D policy," DEGIT Conference Papers c014_042, DEGIT, Dynamics, Economic Growth, and International Trade.
    9. Wiepke Wissema & Rob Dellink, 2010. "AGE assessment of interactions between climate change policy instruments and pre-existing taxes: the case of Ireland," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 10(1/2), pages 46-62.
    10. Marius Bulearca & Cristian Sima, 2015. "IDENTIFYING THE ENVIRONMENTAL ISSUES IN EXTRACTIVE INDUSTRY (International Conference “EUROPEAN PERSPECTIVE OF LABOR MARKET - INOVATION, EXPERTNESS, PERFORMANCE”)," Institute for Economic Forecasting Conference Proceedings 141102, Institute for Economic Forecasting.
    11. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reyer Gerlagh & Snorre Kverndokk & Knut Rosendahl, 2009. "Optimal Timing of Climate Change Policy: Interaction Between Carbon Taxes and Innovation Externalities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 369-390, July.
    2. Gerlagh , Reyer & Kverndokk, Snorre & Rosendahl, Knut Einar, 2008. "Linking Environmental and Innovation Policy," Memorandum 10/2008, Oslo University, Department of Economics.
    3. Gerlagh, Reyer & Kverndokk, Snorre & Rosendahl, Knut Einar, 2014. "The optimal time path of clean energy R&D policy when patents have finite lifetime," Journal of Environmental Economics and Management, Elsevier, vol. 67(1), pages 2-19.
    4. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    5. Gerlagh, Reyer, 2007. "Measuring the value of induced technological change," Energy Policy, Elsevier, vol. 35(11), pages 5287-5297, November.
    6. Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stéphane, 2018. "When starting with the most expensive option makes sense: Optimal timing, cost and sectoral allocation of abatement investment," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 210-233.
    7. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012. "Learning or lock-in: Optimal technology policies to support mitigation," Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
    8. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
    9. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    10. Hart, Rob, 2008. "The timing of taxes on CO2 emissions when technological change is endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 194-212, March.
    11. Kverndokk, Snorre & Rosendahl, Knut Einar, 2007. "Climate policies and learning by doing: Impacts and timing of technology subsidies," Resource and Energy Economics, Elsevier, vol. 29(1), pages 58-82, January.
    12. Mads Greaker & Lise-Lotte Pade, 2008. "Optimal CO2 abatement and technological change. Should emission taxes start high in order to spur R&D?," Discussion Papers 548, Statistics Norway, Research Department.
    13. Kverndokk, Snorre & Rosendahl, Knut Einar & Rutherford, Thomas F., 2004. "Climate policies and induced technological change: Impacts and timing of technology subsidies," Memorandum 05/2004, Oslo University, Department of Economics.
    14. Lucas Bretschger & Roger Ramer & Florentine Schwark, 2010. "Long-Run Effects of Post-Kyoto Policies: Applying a Fully Dynamic CGE model with Heterogeneous Capital," CER-ETH Economics working paper series 10/129, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    15. Jouvet, Pierre-André & Schumacher, Ingmar, 2012. "Learning-by-doing and the costs of a backstop for energy transition and sustainability," Ecological Economics, Elsevier, vol. 73(C), pages 122-132.
    16. Armon Rezai & Frederick Ploeg, 2017. "Second-Best Renewable Subsidies to De-carbonize the Economy: Commitment and the Green Paradox," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 409-434, March.
    17. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    18. Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stephane, 2012. "How inertia and limited potentials affect the timing of sectoral abatements in optimal climate policy," Policy Research Working Paper Series 6154, The World Bank.
    19. Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder, 2011. "Energy Efficiency and Technological Change," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 1, Edward Elgar Publishing.
    20. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.

    More about this item

    Keywords

    Environmental Policy; Technological Change; Research and Development; Learning by Doing;
    All these keywords.

    JEL classification:

    • H21 - Public Economics - - Taxation, Subsidies, and Revenue - - - Efficiency; Optimal Taxation
    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fem:femwpa:2007.35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alberto Prina Cerai (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.