IDEAS home Printed from https://ideas.repec.org/a/eee/moneco/v127y2022icp18-37.html
   My bibliography  Save this article

Will the AI revolution cause a great divergence?

Author

Listed:
  • Alonso, Cristian
  • Berg, Andrew
  • Kothari, Siddharth
  • Papageorgiou, Chris
  • Rehman, Sidra

Abstract

Implications of a new wave of technological change that substitutes pervasively for labor are examined with particular focus on developing countries. While the model considered is minimalist by design, the resulting conclusions are powerful: improvements in the productivity of “robots” drive divergence, as advanced countries differentially benefit from their initially higher robot intensity, driven by their endogenously higher wages and stock of complementary traditional capital. Capital—if internationally mobile—is pulled “uphill”, resulting in a transitional GDP decline in the developing country. When robots substitute only for unskilled labor, the terms of trade, and hence GDP, may decline permanently.

Suggested Citation

  • Alonso, Cristian & Berg, Andrew & Kothari, Siddharth & Papageorgiou, Chris & Rehman, Sidra, 2022. "Will the AI revolution cause a great divergence?," Journal of Monetary Economics, Elsevier, vol. 127(C), pages 18-37.
  • Handle: RePEc:eee:moneco:v:127:y:2022:i:c:p:18-37
    DOI: 10.1016/j.jmoneco.2022.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304393222000162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmoneco.2022.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Joseph Zeira, 1998. "Workers, Machines, and Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1091-1117.
    2. Anders Akerman & Ingvil Gaarder & Magne Mogstad, 2015. "The Skill Complementarity of Broadband Internet," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(4), pages 1781-1824.
    3. Maya Eden & Paul Gaggl, 2018. "On the Welfare Implications of Automation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 29, pages 15-43, July.
    4. Daron Acemoglu & Pascual Restrepo, 2018. "Modeling Automation," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 48-53, May.
    5. Daniel Susskind, 2019. "Re-thinking the capabilities of technology in economics," Economics Bulletin, AccessEcon, vol. 39(1), pages 280-288.
    6. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    7. Daron Acemoglu & Pascual Restrepo, 2019. "Automation and New Tasks: How Technology Displaces and Reinstates Labor," Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 3-30, Spring.
    8. Daron Acemoglu & Pascual Restrepo, 2018. "Artificial Intelligence, Automation, and Work," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 197-236, National Bureau of Economic Research, Inc.
    9. Seth G. Benzell & Laurence J. Kotlikoff & Guillermo LaGarda & Victor Yifan Ye, 2021. "Simulating Endogenous Global Automation," NBER Working Papers 29220, National Bureau of Economic Research, Inc.
    10. Daron Acemoglu & Pascual Restrepo, 2018. "Low-Skill and High-Skill Automation," Journal of Human Capital, University of Chicago Press, vol. 12(2), pages 204-232.
    11. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The skill content of recent technological change: an empirical exploration," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    12. Daron Acemoglu & Pascual Restrepo, 2018. "Artificial Intelligence, Automation and Work," Boston University - Department of Economics - Working Papers Series dp-298, Boston University - Department of Economics.
    13. David H. Autor & David Dorn, 2013. "The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market," American Economic Review, American Economic Association, vol. 103(5), pages 1553-1597, August.
    14. Shiller, Robert J., 2019. "Narratives about technology-induced job degradation then and now," Journal of Policy Modeling, Elsevier, vol. 41(3), pages 477-488.
    15. Berg, Andrew & Buffie, Edward F. & Zanna, Luis-Felipe, 2018. "Should we fear the robot revolution? (The correct answer is yes)," Journal of Monetary Economics, Elsevier, vol. 97(C), pages 117-148.
    16. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    17. Anton Korinek & Joseph E. Stiglitz, 2021. "Artificial Intelligence, Globalization, and Strategies for Economic Development," NBER Working Papers 28453, National Bureau of Economic Research, Inc.
    18. Robert J. Shiller, 2019. "Narratives about Technology-Induced Job Degradations Then and Now," NBER Working Papers 25536, National Bureau of Economic Research, Inc.
    19. Francesco Caselli & Alan Manning, 2019. "Robot Arithmetic: New Technology and Wages," American Economic Review: Insights, American Economic Association, vol. 1(1), pages 1-12, June.
    20. Robert J. Shiller, 2019. "Narratives About Technology-Induced Job Degradation Then and Now," Cowles Foundation Discussion Papers 2168, Cowles Foundation for Research in Economics, Yale University.
    21. William D. Nordhaus, 2021. "Are We Approaching an Economic Singularity? Information Technology and the Future of Economic Growth," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(1), pages 299-332, January.
    22. Dani Rodrik, 2016. "Premature deindustrialization," Journal of Economic Growth, Springer, vol. 21(1), pages 1-33, March.
    23. World Bank, 2019. "World Development Report 2019 [Rapport sur le développement dans le monde 2019]," World Bank Publications - Books, The World Bank Group, number 30435, December.
    24. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    25. Jeffrey D. Sachs & Laurence J. Kotlikoff, 2012. "Smart Machines and Long-Term Misery," NBER Working Papers 18629, National Bureau of Economic Research, Inc.
    26. Mr. Emre Alper & Sidra Rehman & Siddharth Kothari & Aidar Abdychev & Preya Sharma & Cristian Alonso & Yun Liu & Mathilde Perinet & Mr. Dominique Desruelle & Mr. Axel Schimmelpfennig, 2018. "The Future of Work in Sub-Saharan Africa," IMF Departmental Papers / Policy Papers 2018/018, International Monetary Fund.
    27. Marcos de Carvalho Chamon & Michael R. Kremer, 2006. "Asian Growth and African Development," American Economic Review, American Economic Association, vol. 96(2), pages 400-404, May.
    28. Acemoglu, Daron, 2021. "Harms of AI," CEPR Discussion Papers 16524, C.E.P.R. Discussion Papers.
    29. Jeffrey D. Sachs, 2018. "R&D, Structural Transformation, and the Distribution of Income," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 329-348, National Bureau of Economic Research, Inc.
    30. Joel Mokyr & Chris Vickers & Nicolas L. Ziebarth, 2015. "The History of Technological Anxiety and the Future of Economic Growth: Is This Time Different?," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 31-50, Summer.
    31. Ljubica Nedelkoska & Glenda Quintini, 2018. "Automation, skills use and training," OECD Social, Employment and Migration Working Papers 202, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anton Korinek & Joseph E. Stiglitz, 2021. "Artificial Intelligence, Globalization, and Strategies for Economic Development," Working Papers Series inetwp146, Institute for New Economic Thinking.
    2. Lidan Jiang & Jingyan Chen & Yuhan Bao & Fang Zou, 2022. "Exploring the patterns of international technology diffusion in AI from the perspective of patent citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5307-5323, September.
    3. Jing Li & Zidong An & Yan Wang, 2023. "On the Substitution and Complementarity between Robots and Labor: Evidence from Advanced and Emerging Economies," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    4. An, Zidong & Zhang, Feinan & Li, Haibo, 2022. "Elasticity of substitution between public and private capital: Evidence from manufacturing firms in Europe," Economics Letters, Elsevier, vol. 219(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Macías, Enrique & Klenert, David & Antón, José-Ignacio, 2021. "Not so disruptive yet? Characteristics, distribution and determinants of robots in Europe," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 76-89.
    2. Barbieri, Laura & Mussida, Chiara & Piva, Mariacristina & Vivarelli, Marco, 2019. "Testing the employment and skill impact of new technologies: A survey and some methodological issues," MERIT Working Papers 2019-032, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    3. Stähler, Nikolai, 2021. "The Impact of Aging and Automation on the Macroeconomy and Inequality," Journal of Macroeconomics, Elsevier, vol. 67(C).
    4. Genz, Sabrina & Schnabel, Claus, 2021. "Digging into the digital divide: Workers' exposure to digitalization and its consequences for individual employment," Discussion Papers 118, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Labour and Regional Economics.
    5. Fierro, Luca Eduardo & Caiani, Alessandro & Russo, Alberto, 2022. "Automation, Job Polarisation, and Structural Change," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 499-535.
    6. Caselli, Mauro & Fracasso, Andrea & Scicchitano, Sergio & Traverso, Silvio & Tundis, Enrico, 2021. "Stop worrying and love the robot: An activity-based approach to assess the impact of robotization on employment dynamics," GLO Discussion Paper Series 802, Global Labor Organization (GLO).
    7. Jean-Philippe Deranty & Thomas Corbin, 2022. "Artificial Intelligence and work: a critical review of recent research from the social sciences," Papers 2204.00419, arXiv.org.
    8. Jasmine Mondolo, 2022. "The composite link between technological change and employment: A survey of the literature," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1027-1068, September.
    9. Fossen, Frank M. & Sorgner, Alina, 2022. "New digital technologies and heterogeneous wage and employment dynamics in the United States: Evidence from individual-level data," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    10. Arntz, Melanie & Blesse, Sebastian & Doerrenberg, Philipp, 2022. "The end of work is near, isn't it? Survey evidence on automation angst," ZEW Discussion Papers 22-036, ZEW - Leibniz Centre for European Economic Research.
    11. Montobbio, Fabio & Staccioli, Jacopo & Virgillito, Maria Enrica & Vivarelli, Marco, 2022. "Robots and the origin of their labour-saving impact," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    12. José-Ignacio Antón & David Klenert & Enrique Fernández-Macías & Maria Cesira Urzì Brancati & Georgios Alaveras, 2022. "The labour market impact of robotisation in Europe," European Journal of Industrial Relations, , vol. 28(3), pages 317-339, September.
    13. Gregory, Terry & Salomons, Anna & Zierahn, Ulrich, 2016. "Racing With or Against the Machine? Evidence from Europe," VfS Annual Conference 2016 (Augsburg): Demographic Change 145843, Verein für Socialpolitik / German Economic Association.
    14. Azio Barani, 2021. "Innovazione tecnologica e lavoro: automazione, occupazione e impatti socio-economici," QUADERNI DI ECONOMIA DEL LAVORO, FrancoAngeli Editore, vol. 0(114), pages 51-79.
    15. Gasteiger, Emanuel & Prettner, Klaus, 2022. "Automation, Stagnation, And The Implications Of A Robot Tax," Macroeconomic Dynamics, Cambridge University Press, vol. 26(1), pages 218-249, January.
    16. Roberto Antonietti & Luca Cattani & Francesca Gambarotto & Giulio Pedrini, 2021. "Education, routine, and complexity-biased Knowledge Enabling Technologies: Evidence from Emilia-Romagna, Italy," Discussion Paper series in Regional Science & Economic Geography 2021-07, Gran Sasso Science Institute, Social Sciences, revised May 2021.
    17. Filippo Bertani & Marco Raberto & Andrea Teglio, 2020. "The productivity and unemployment effects of the digital transformation: an empirical and modelling assessment," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 329-355, November.
    18. Cirillo, Valeria & Evangelista, Rinaldo & Guarascio, Dario & Sostero, Matteo, 2021. "Digitalization, routineness and employment: An exploration on Italian task-based data," Research Policy, Elsevier, vol. 50(7).
    19. Tiare Rivera, 2019. "Efectos de la automatización en el empleo en Chile," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 34(1), pages 3-49, April.
    20. HAMAGUCHI Nobuaki & KONDO Keisuke, 2018. "Regional Employment and Artificial Intelligence in Japan," Discussion papers 18032, Research Institute of Economy, Trade and Industry (RIETI).

    More about this item

    Keywords

    Automation; Robots; Divergence; Development; Technological change;
    All these keywords.

    JEL classification:

    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development
    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:moneco:v:127:y:2022:i:c:p:18-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505566 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.