IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v105y2021ics0264837721000764.html
   My bibliography  Save this article

Optimal land use allocation for the Heathrow opportunity area using multi-objective linear programming

Author

Listed:
  • Oléron-Evans, Thomas P.
  • Salhab, Melda

Abstract

The London Plan, the Greater London Authority’s spatial development strategy for London, has defined Heathrow as an Opportunity Area – an area with the capacity to support additional homes and jobs – since 2004, but progress on developing the area has been minimal. Uncertainty around the expansion of Heathrow Airport appears to have adversely affected progress. Nevertheless, the most recent London Plan stipulates that the Heathrow Opportunity Area should accommodate 13,000 new homes and 11,000 new jobs. In this article, multi-objective linear programming is used to investigate whether these figures are achievable given constraints on land availability and land use mix. How land uses might best be assigned to maximise home, job and gross value added (GVA) creation within the Heathrow Opportunity Area is also explored. The main contributions are to provide independent scrutiny of London’s development strategy and to present a mathematical framework for land use allocation planning decisions in urban areas. Findings show that given 700 ha of available land, as indicated in the London Plan, home and job creation figures can be met. However, there is insufficient brownfield land to meet these targets, and development on Green Belt land would very likely be necessary. Strong land use allocations for the area are found to more heavily feature financial and professional services, other office-based businesses, and shops. Rather than presenting a single land use “solution”, results are presented using a wide range of visualisations to illustrate key trade-offs between different goals, with the secondary aim of promoting multi-objective linear programming to planners as a valuable tool to support spatial decisions and policy making.

Suggested Citation

  • Oléron-Evans, Thomas P. & Salhab, Melda, 2021. "Optimal land use allocation for the Heathrow opportunity area using multi-objective linear programming," Land Use Policy, Elsevier, vol. 105(C).
  • Handle: RePEc:eee:lauspo:v:105:y:2021:i:c:s0264837721000764
    DOI: 10.1016/j.landusepol.2021.105353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837721000764
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2021.105353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deepak Bammi & Dalip Bammi, 1979. "Development of a Comprehensive Land Use Plan by Means of a Multiple Objective Mathematical Programming Model," Interfaces, INFORMS, vol. 9(2-part-2), pages 50-63, February.
    2. Henseler, Martin & Wirsig, Alexander & Herrmann, Sylvia & Krimly, Tatjana & Dabbert, Stephan, 2009. "Modeling the impact of global change on regional agricultural land use through an activity-based non-linear programming approach," Agricultural Systems, Elsevier, vol. 100(1-3), pages 31-42, April.
    3. John Ward, E. & Dimitriou, Harry T. & Wright, Phil & Dean, Marco, 2016. "Application of policy-led multi-criteria analysis to the project appraisal of the Northern Line Extension, London," Research in Transportation Economics, Elsevier, vol. 58(C), pages 46-80.
    4. Glover, Fred & Martinson, Fred, 1987. "Multiple-use land planning and conflict resolution by multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 28(3), pages 343-350, March.
    5. John C. Day, 1973. "A Linear Programming Approach to Floodplain Land Use Planning in Urban Areas," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 55(2), pages 165-174.
    6. E. Downey Brill, Jr., 1979. "The Use of Optimization Models in Public-Sector Planning," Management Science, INFORMS, vol. 25(5), pages 413-422, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mu Lin & Jingxin Gao & Yongjie Du & Pengyu Ren, 2023. "Mismatch in Urban Construction Land Use and Economic Growth: Empirical Evidence from China," Land, MDPI, vol. 12(2), pages 1-21, February.
    2. Bingkui Qiu & Yan Tu & Guoliang Ou & Min Zhou & Yifan Zhu & Shuhan Liu & Haoyang Ma, 2023. "Optimal Modeling of Sustainable Land Use Planning under Uncertain at a Watershed Level: Interval Stochastic Fuzzy Linear Programming with Chance Constraints," Land, MDPI, vol. 12(5), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zanakis, Stelios H. & Mandakovic, Tomislav & Gupta, Sushil K. & Sahay, Sundeep & Hong, Sungwan, 1995. "A review of program evaluation and fund allocation methods within the service and government sectors," Socio-Economic Planning Sciences, Elsevier, vol. 29(1), pages 59-79, March.
    2. Iddo Kan & Ofira Ayalon & Roy Federman, 2010. "On the efficiency of composting organic wastes," Agricultural Economics, International Association of Agricultural Economists, vol. 41(2), pages 151-163, March.
    3. Yuanyuan Yang & Shuwen Zhang & Dongyan Wang & Jiuchun Yang & Xiaoshi Xing, 2014. "Spatiotemporal Changes of Farming-Pastoral Ecotone in Northern China, 1954–2005: A Case Study in Zhenlai County, Jilin Province," Sustainability, MDPI, vol. 7(1), pages 1-22, December.
    4. H Briassoulis, 1995. "Land Development in the Vicinity of Hazardous Facilities: A Compromise Assignment Procedure," Environment and Planning B, , vol. 22(5), pages 509-525, October.
    5. Varela-Ortega, Consuelo, 2011. "Participatory Modeling for Sustainable Development in Water and Agrarian Systems: Potential and Limits of Stakeholder Involvement," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 115546, European Association of Agricultural Economists.
    6. Schönhart, Martin & Schauppenlehner, Thomas & Schmid, Erwin, 2014. "Integrated land use modelling of climate change impacts in two Austrian case study landscapes at field level," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182680, European Association of Agricultural Economists.
    7. Schmidtner, Eva & Dabbert, Stephan & Lippert, Christian, 2015. "Do Different Measurements of Soil Quality Influence the Results of a Ricardian Analysis? – A Case Study on the Effects of Climate Change on German Agriculture," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 64(02), June.
    8. Makowski, David & Hendrix, Eligius M. T. & van Ittersum, Martin K. & Rossing, Walter A. H., 2001. "Generation and presentation of nearly optimal solutions for mixed-integer linear programming, applied to a case in farming system design," European Journal of Operational Research, Elsevier, vol. 132(2), pages 425-438, July.
    9. Jayashankar M. Swaminathan, 2003. "Decision Support for Allocating Scarce Drugs," Interfaces, INFORMS, vol. 33(2), pages 1-11, April.
    10. Afsana Haque & Yasushi Asami, 2011. "Optimizing Urban Land-Use Allocation: Case Study of Dhanmondi Residential Area, Dhaka, Bangladesh," Environment and Planning B, , vol. 38(3), pages 388-410, June.
    11. Kirchner, Mathias & Mitter, Hermine & Schönhart, Martin & Schmid, Erwin, 2014. "Integrated land use modelling to analyse climate change adaptation in Austrian agriculture," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182944, European Association of Agricultural Economists.
    12. Kirchner, Mathias & Schmidt, Johannes & Kindermann, Georg & Kulmer, Veronika & Mitter, Hermine & Prettenthaler, Franz & Rüdisser, Johannes & Schauppenlehner, Thomas & Schönhart, Martin & Strauss, Fran, 2015. "Ecosystem services and economic development in Austrian agricultural landscapes — The impact of policy and climate change scenarios on trade-offs and synergies," Ecological Economics, Elsevier, vol. 109(C), pages 161-174.
    13. Doole, Graeme & Pannell, David J., 2012. "Empirical evaluation of nonpoint pollution policies under agent heterogeneity: regulating intensive dairy production in the Waikato region of New Zealand," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 56(1), pages 1-20, March.
    14. J T Diamond & J R Wright, 1988. "Design of an Integrated Spatial Information System for Multiobjective Land-Use Planning," Environment and Planning B, , vol. 15(2), pages 205-214, June.
    15. Cho, Huidae & Kim, Dongkyun & Olivera, Francisco & Guikema, Seth D., 2011. "Enhanced speciation in particle swarm optimization for multi-modal problems," European Journal of Operational Research, Elsevier, vol. 213(1), pages 15-23, August.
    16. Moli Gu & Changsheng Ye & Xin Li & Haiping Hu, 2022. "Land-Use Optimization Based on Ecosystem Service Value: A Case Study of Urban Agglomeration around Poyang Lake, China," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    17. Sudhir, V. & Muraleedharan, V. R. & Srinivasan, G., 1996. "Integrated solid waste management in Urban India: A critical operational research framework," Socio-Economic Planning Sciences, Elsevier, vol. 30(3), pages 163-181, September.
    18. Kirchner, Mathias & Schonhart, Martin & Schmid, Erwin, 2015. "The impacst of CAP post-2013 and regional climate change on agricultural land use intensity and the environment in Austria," 2015 Conference, August 9-14, 2015, Milan, Italy 212004, International Association of Agricultural Economists.
    19. Lee, Hwarang & Eom, Jiyong & Cho, Cheolhung & Koo, Yoonmo, 2019. "A bottom-up model of industrial energy system with positive mathematical programming," Energy, Elsevier, vol. 173(C), pages 679-690.
    20. Doole, Graeme & Pannell, David J., 2011. "Evaluating environmental policies under uncertainty through application of robust nonlinear programming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(4), pages 1-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:105:y:2021:i:c:s0264837721000764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.