IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v85y2023ipas0301420723004919.html
   My bibliography  Save this article

Green finance and the socio-politico-economic factors’ impact on the future oil prices: Evidence from machine learning

Author

Listed:
  • Mohsin, Muhammad
  • Jamaani, Fouad

Abstract

This paper suggests an innovative method of estimating crude oil prices based on multiple socio-politico-economic factors in context of green finance using the Least Absolute Shrinkage and Selection Operator (LASSO) model. This work also examines the relevance of six factors (commodities market factors, geopolitical factors, supply, demand, and financial market factors), in addition to green finace, in evaluating several forecasting models and identifying statistically essential factors for predicting future oil prices. We implement state of the art LASSO model on a data set of the abovementioned factors (26 variables). The proposed model is evaluated against four bench mark models (traditional statistical models (OLS, GARCH), EIA and artificial neural networks) at different time steps (1 step, 3 steps, 6 steps, and 9 steps). Statistical analysis of outcomes shows that the LASSO technique produces better predictions than other benchmark models. The results also deliver detailed insights into the temporal association between numerous socio-politico-economic factors, green finance and crude oil. Our findings indicate that the global output of steel, the Kilian index, the Institute for Supply Management index, green finance index, the value of the dollar, and the frequency of terrorist strikes in Central East and Northern Africa are important demand drivers. These elements, taken as a whole, are more significant than supply and speculation. We also find that no variable from the supply factor is essential in determining the future oil value. Our results are significant for government and policy makers to gain insight into future oil prices in the context of various social, economic, and political factors.

Suggested Citation

  • Mohsin, Muhammad & Jamaani, Fouad, 2023. "Green finance and the socio-politico-economic factors’ impact on the future oil prices: Evidence from machine learning," Resources Policy, Elsevier, vol. 85(PA).
  • Handle: RePEc:eee:jrpoli:v:85:y:2023:i:pa:s0301420723004919
    DOI: 10.1016/j.resourpol.2023.103780
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420723004919
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2023.103780?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Li & Wang, Lu & Wang, Xunxiao & Zhang, Yaojie & Pan, Zhigang, 2022. "How macro-variables drive crude oil volatility? Perspective from the STL-based iterated combination method," Resources Policy, Elsevier, vol. 77(C).
    2. Fan, Ying & Xu, Jin-Hua, 2011. "What has driven oil prices since 2000? A structural change perspective," Energy Economics, Elsevier, vol. 33(6), pages 1082-1094.
    3. Coleman, Les, 2012. "Explaining crude oil prices using fundamental measures," Energy Policy, Elsevier, vol. 40(C), pages 318-324.
    4. Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.
    5. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    6. David H. Romer & Jeffrey A. Frankel, 1999. "Does Trade Cause Growth?," American Economic Review, American Economic Association, vol. 89(3), pages 379-399, June.
    7. Min Liu & Wei‐Chong Choo & Chi‐Chuan Lee & Chien‐Chiang Lee, 2023. "Trading volume and realized volatility forecasting: Evidence from the China stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 76-100, January.
    8. Christiane Baumeister & Lutz Kilian, 2015. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
    9. Hallock, John L. & Tharakan, Pradeep J. & Hall, Charles A.S. & Jefferson, Michael & Wu, Wei, 2004. "Forecasting the limits to the availability and diversity of global conventional oil supply," Energy, Elsevier, vol. 29(11), pages 1673-1696.
    10. Arif, Asma & Minh Vu, Hieu & Cong, Ma & Hon Wei, Leow & Islam, Md. Monirul & Niedbała, Gniewko, 2022. "Natural resources commodity prices volatility and economic performance: Evaluating the role of green finance," Resources Policy, Elsevier, vol. 76(C).
    11. Cheng, Xian & Wu, Peng & Liao, Stephen Shaoyi & Wang, Xuelian, 2023. "An integrated model for crude oil forecasting: Causality assessment and technical efficiency," Energy Economics, Elsevier, vol. 117(C).
    12. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    13. Lee, Chi-Chuan & Lee, Chien-Chiang, 2022. "How does green finance affect green total factor productivity? Evidence from China," Energy Economics, Elsevier, vol. 107(C).
    14. Tiwari, Aviral Kumar & Aye, Goodness C. & Gupta, Rangan & Gkillas, Konstantinos, 2020. "Gold-oil dependence dynamics and the role of geopolitical risks: Evidence from a Markov-switching time-varying copula model," Energy Economics, Elsevier, vol. 88(C).
    15. Stevens, Paul, 1995. "The determination of oil prices 1945-1995 : A diagrammatic interpretation," Energy Policy, Elsevier, vol. 23(10), pages 861-870, October.
    16. Kaufmann, Robert K. & Dees, Stephane & Gasteuil, Audrey & Mann, Michael, 2008. "Oil prices: The role of refinery utilization, futures markets and non-linearities," Energy Economics, Elsevier, vol. 30(5), pages 2609-2622, September.
    17. Asif, M. & Muneer, T., 2007. "Energy supply, its demand and security issues for developed and emerging economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1388-1413, September.
    18. He, Huizi & Sun, Mei & Li, Xiuming & Mensah, Isaac Adjei, 2022. "A novel crude oil price trend prediction method: Machine learning classification algorithm based on multi-modal data features," Energy, Elsevier, vol. 244(PA).
    19. Scotti, Chiara, 2016. "Surprise and uncertainty indexes: Real-time aggregation of real-activity macro-surprises," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 1-19.
    20. Hammoudeh, Shawkat & Li, Huimin, 2005. "Oil sensitivity and systematic risk in oil-sensitive stock indices," Journal of Economics and Business, Elsevier, vol. 57(1), pages 1-21.
    21. Lutz Kilian & Daniel P. Murphy, 2014. "The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
    22. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    23. Dai, Xingyu & Wang, Qunwei & Zha, Donglan & Zhou, Dequn, 2020. "Multi-scale dependence structure and risk contagion between oil, gold, and US exchange rate: A wavelet-based vine-copula approach," Energy Economics, Elsevier, vol. 88(C).
    24. Jabeur, Sami Ben & Gharib, Cheima & Mefteh-Wali, Salma & Arfi, Wissal Ben, 2021. "CatBoost model and artificial intelligence techniques for corporate failure prediction," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    25. Wang, Yudong & Liu, Li & Wu, Chongfeng, 2017. "Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models," Energy Economics, Elsevier, vol. 66(C), pages 337-348.
    26. Mensi, Walid & Sensoy, Ahmet & Vo, Xuan Vinh & Kang, Sang Hoon, 2020. "Impact of COVID-19 outbreak on asymmetric multifractality of gold and oil prices," Resources Policy, Elsevier, vol. 69(C).
    27. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    28. Bernabe, Araceli & Martina, Esteban & Alvarez-Ramirez, Jose & Ibarra-Valdez, Carlos, 2004. "A multi-model approach for describing crude oil price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 567-584.
    29. Kaufmann, Robert K., 2011. "The role of market fundamentals and speculation in recent price changes for crude oil," Energy Policy, Elsevier, vol. 39(1), pages 105-115, January.
    30. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    31. Niu, Hongli, 2021. "Correlations between crude oil and stocks prices of renewable energy and technology companies: A multiscale time-dependent analysis," Energy, Elsevier, vol. 221(C).
    32. Sadorsky, Perry, 1999. "Oil price shocks and stock market activity," Energy Economics, Elsevier, vol. 21(5), pages 449-469, October.
    33. Li, Qingtao & Sharif, Arshian & Razzaq, Asif & Yu, Yangyu, 2022. "Do climate technology, financialization, and sustainable finance impede environmental challenges? Evidence from G10 economies," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    34. Sen, Doruk & Hamurcuoglu, K. Irem & Ersoy, Melisa Z. & Tunç, K.M. Murat & Günay, M. Erdem, 2023. "Forecasting long-term world annual natural gas production by machine learning," Resources Policy, Elsevier, vol. 80(C).
    35. Wang, Quan-Jing & Wang, Hai-Jie & Chang, Chun-Ping, 2022. "Environmental performance, green finance and green innovation: What's the long-run relationships among variables?," Energy Economics, Elsevier, vol. 110(C).
    36. Bai, Yun & Li, Xixi & Yu, Hao & Jia, Suling, 2022. "Crude oil price forecasting incorporating news text," International Journal of Forecasting, Elsevier, vol. 38(1), pages 367-383.
    37. Naeem, Muhammad Abubakr & Hasan, Mudassar & Arif, Muhammad & Balli, Faruk & Shahzad, Syed Jawad Hussain, 2020. "Time and frequency domain quantile coherence of emerging stock markets with gold and oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    38. Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
    39. Wang, Bin & Wang, Jun, 2021. "Energy futures price prediction and evaluation model with deep bidirectional gated recurrent unit neural network and RIF-based algorithm," Energy, Elsevier, vol. 216(C).
    40. Dutta, Anupam & Soytas, Ugur & Das, Debojyoti & Bhattacharyya, Asit, 2022. "In search of time-varying jumps during the turmoil periods: Evidence from crude oil futures markets," Energy Economics, Elsevier, vol. 114(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao, Hong & Ramchander, Sanjay & Wang, Tianyang & Yang, Dongxiao, 2017. "Influential factors in crude oil price forecasting," Energy Economics, Elsevier, vol. 68(C), pages 77-88.
    2. Guliyev, Hasraddin & Mustafayev, Eldayag, 2022. "Predicting the changes in the WTI crude oil price dynamics using machine learning models," Resources Policy, Elsevier, vol. 77(C).
    3. Krzysztof Drachal, 2018. "Determining Time-Varying Drivers of Spot Oil Price in a Dynamic Model Averaging Framework," Energies, MDPI, vol. 11(5), pages 1-24, May.
    4. Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.
    5. Drachal, Krzysztof, 2018. "Comparison between Bayesian and information-theoretic model averaging: Fossil fuels prices example," Energy Economics, Elsevier, vol. 74(C), pages 208-251.
    6. Ding Du & Xiaobing Zhao, 2017. "Financial investor sentiment and the boom/bust in oil prices during 2003–2008," Review of Quantitative Finance and Accounting, Springer, vol. 48(2), pages 331-361, February.
    7. Zhenhua Liu & Zhihua Ding & Tao Lv & Jy S. Wu & Wei Qiang, 2019. "Financial factors affecting oil price change and oil-stock interactions: a review and future perspectives," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 207-225, January.
    8. Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).
    9. Lan Bai & Xiafei Li & Yu Wei & Guiwu Wei, 2022. "Does crude oil futures price really help to predict spot oil price? New evidence from density forecasting," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3694-3712, July.
    10. Stavros Degiannakis, George Filis, and Vipin Arora, 2018. "Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    11. Cheng, Xian & Wu, Peng & Liao, Stephen Shaoyi & Wang, Xuelian, 2023. "An integrated model for crude oil forecasting: Causality assessment and technical efficiency," Energy Economics, Elsevier, vol. 117(C).
    12. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    13. Qadan, Mahmoud & Idilbi-Bayaa, Yasmeen, 2020. "Risk appetite and oil prices," Energy Economics, Elsevier, vol. 85(C).
    14. Kais Tissaoui & Taha Zaghdoudi & Abdelaziz Hakimi & Ousama Ben-Salha & Lamia Ben Amor, 2022. "Does Uncertainty Forecast Crude Oil Volatility before and during the COVID-19 Outbreak? Fresh Evidence Using Machine Learning Models," Energies, MDPI, vol. 15(15), pages 1-20, August.
    15. Li, Xiafei & Liang, Chao & Chen, Zhonglu & Umar, Muhammad, 2022. "Forecasting crude oil volatility with uncertainty indicators: New evidence," Energy Economics, Elsevier, vol. 108(C).
    16. Qadan, Mahmoud & Nama, Hazar, 2018. "Investor sentiment and the price of oil," Energy Economics, Elsevier, vol. 69(C), pages 42-58.
    17. Robert Socha & Piotr Wdowiński, 2018. "Crude oil price and speculative activity: a cointegration analysis," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(3), pages 263-304, September.
    18. Hao, Xianfeng & Zhao, Yuyang & Wang, Yudong, 2020. "Forecasting the real prices of crude oil using robust regression models with regularization constraints," Energy Economics, Elsevier, vol. 86(C).
    19. Deeney, Peter & Cummins, Mark & Dowling, Michael & Bermingham, Adam, 2015. "Sentiment in oil markets," International Review of Financial Analysis, Elsevier, vol. 39(C), pages 179-185.
    20. Adams, Zeno & Collot, Solène & Kartsakli, Maria, 2020. "Have commodities become a financial asset? Evidence from ten years of Financialization," Energy Economics, Elsevier, vol. 89(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:85:y:2023:i:pa:s0301420723004919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.