IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v71y2021ics0301420721000131.html
   My bibliography  Save this article

Asymmetric connectedness and dynamic spillovers between renewable energy and rare earth markets in China: Evidence from firms’ high-frequency data

Author

Listed:
  • Zheng, Biao
  • Zhang, Yuquan
  • Chen, Yufeng

Abstract

The accelerating pace of energy use transition towards renewable energy worldwide has triggered the amplification of the demand for rare earths. This paper aims to explore the risk transfer between renewable energy and rare earth markets from the perspective of firms. The intention is motivated by the observation that significant investments regarding renewable energy are projected for the future and rare earths have emerged as an investment vehicle. By applying the DY (Diebold and Yilmaz) index onto high-frequency data, this paper sheds light on the connectedness between new energy and rare earth markets at firm level. Empirical results show that moderate volatility spillovers exist between these two markets in China. The risk transfer between firms in renewable energy and rare earth markets is also delineated in the form of network connectedness. The magnitude of risk transfer among firms may alter and the structure of risk transfer has seen shifts of focuses among firms over time. Furthermore, using the method of spillover asymmetric measure, pessimistic mood is detected in both markets during most of the period from 2012 to 2020, which indicates a lack of confidence and efficiency in the financing channel of stock. Compared with the existing literature, this article provides a finance-oriented exploration between these two markets using high-frequency data and a detailed illustration at firm level, which may help inform the decision-making for stakeholders.

Suggested Citation

  • Zheng, Biao & Zhang, Yuquan & Chen, Yufeng, 2021. "Asymmetric connectedness and dynamic spillovers between renewable energy and rare earth markets in China: Evidence from firms’ high-frequency data," Resources Policy, Elsevier, vol. 71(C).
  • Handle: RePEc:eee:jrpoli:v:71:y:2021:i:c:s0301420721000131
    DOI: 10.1016/j.resourpol.2021.101996
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420721000131
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2021.101996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    2. Månberger, André & Stenqvist, Björn, 2018. "Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development," Energy Policy, Elsevier, vol. 119(C), pages 226-241.
    3. Restrepo, Natalia & Uribe, Jorge M. & Manotas, Diego, 2018. "Financial risk network architecture of energy firms," Applied Energy, Elsevier, vol. 215(C), pages 630-642.
    4. Chen, Yufeng & Zheng, Biao & Qu, Fang, 2020. "Modeling the nexus of crude oil, new energy and rare earth in China: An asymmetric VAR-BEKK (DCC)-GARCH approach," Resources Policy, Elsevier, vol. 65(C).
    5. Moss, R.L. & Tzimas, E. & Kara, H. & Willis, P. & Kooroshy, J., 2013. "The potential risks from metals bottlenecks to the deployment of Strategic Energy Technologies," Energy Policy, Elsevier, vol. 55(C), pages 556-564.
    6. Hoenderdaal, Sander & Tercero Espinoza, Luis & Marscheider-Weidemann, Frank & Graus, Wina, 2013. "Can a dysprosium shortage threaten green energy technologies?," Energy, Elsevier, vol. 49(C), pages 344-355.
    7. Troster, Victor & Shahbaz, Muhammad & Uddin, Gazi Salah, 2018. "Renewable energy, oil prices, and economic activity: A Granger-causality in quantiles analysis," Energy Economics, Elsevier, vol. 70(C), pages 440-452.
    8. Davidsson, Simon & Höök, Mikael, 2017. "Material requirements and availability for multi-terawatt deployment of photovoltaics," Energy Policy, Elsevier, vol. 108(C), pages 574-582.
    9. Proelss, Juliane & Schweizer, Denis & Seiler, Volker, 2020. "The economic importance of rare earth elements volatility forecasts," International Review of Financial Analysis, Elsevier, vol. 71(C).
    10. Baldi, Lucia & Peri, Massimo & Vandone, Daniela, 2014. "Clean energy industries and rare earth materials: Economic and financial issues," Energy Policy, Elsevier, vol. 66(C), pages 53-61.
    11. Wang, Peng & Chen, Li-Yang & Ge, Jian-Ping & Cai, Wenjia & Chen, Wei-Qiang, 2019. "Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Dincer, Ibrahim, 2000. "Renewable energy and sustainable development: a crucial review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 157-175, June.
    13. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2016. "Asymmetric connectedness on the U.S. stock market: Bad and good volatility spillovers," Journal of Financial Markets, Elsevier, vol. 27(C), pages 55-78.
    14. Fasanya, Ismail & Akinbowale, Seun, 2019. "Modelling the return and volatility spillovers of crude oil and food prices in Nigeria," Energy, Elsevier, vol. 169(C), pages 186-205.
    15. Henriques, Irene & Sadorsky, Perry, 2008. "Oil prices and the stock prices of alternative energy companies," Energy Economics, Elsevier, vol. 30(3), pages 998-1010, May.
    16. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    17. Grandell, Leena & Thorenz, Andrea, 2014. "Silver supply risk analysis for the solar sector," Renewable Energy, Elsevier, vol. 69(C), pages 157-165.
    18. Klossek, Polina & Kullik, Jakob & van den Boogaart, Karl Gerald, 2016. "A systemic approach to the problems of the rare earth market," Resources Policy, Elsevier, vol. 50(C), pages 131-140.
    19. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    20. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    21. Reboredo, Juan C. & Ugolini, Andrea, 2020. "Price spillovers between rare earth stocks and financial markets," Resources Policy, Elsevier, vol. 66(C).
    22. Fernandez, Viviana, 2017. "Rare-earth elements market: A historical and financial perspective," Resources Policy, Elsevier, vol. 53(C), pages 26-45.
    23. Kleijn, René & van der Voet, Ester & Kramer, Gert Jan & van Oers, Lauran & van der Giesen, Coen, 2011. "Metal requirements of low-carbon power generation," Energy, Elsevier, vol. 36(9), pages 5640-5648.
    24. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    25. Ahmad, Wasim, 2017. "On the dynamic dependence and investment performance of crude oil and clean energy stocks," Research in International Business and Finance, Elsevier, vol. 42(C), pages 376-389.
    26. Sadorsky, Perry, 2012. "Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies," Energy Economics, Elsevier, vol. 34(1), pages 248-255.
    27. Broadstock, David C. & Cao, Hong & Zhang, Dayong, 2012. "Oil shocks and their impact on energy related stocks in China," Energy Economics, Elsevier, vol. 34(6), pages 1888-1895.
    28. Elshkaki, Ayman & Shen, Lei, 2019. "Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications," Energy, Elsevier, vol. 180(C), pages 903-917.
    29. Viebahn, Peter & Soukup, Ole & Samadi, Sascha & Teubler, Jens & Wiesen, Klaus & Ritthoff, Michael, 2015. "Assessing the need for critical minerals to shift the German energy system towards a high proportion of renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 655-671.
    30. Wen, Xiaoqian & Guo, Yanfeng & Wei, Yu & Huang, Dengshi, 2014. "How do the stock prices of new energy and fossil fuel companies correlate? Evidence from China," Energy Economics, Elsevier, vol. 41(C), pages 63-75.
    31. Apergis, Emmanuel & Apergis, Nicholas, 2017. "The role of rare earth prices in renewable energy consumption: The actual driver for a renewable energy world," Energy Economics, Elsevier, vol. 62(C), pages 33-42.
    32. Sadorsky, Perry, 2014. "Modeling volatility and correlations between emerging market stock prices and the prices of copper, oil and wheat," Energy Economics, Elsevier, vol. 43(C), pages 72-81.
    33. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    34. Lin, Boqiang & Xu, Bin, 2018. "How to promote the growth of new energy industry at different stages?," Energy Policy, Elsevier, vol. 118(C), pages 390-403.
    35. Reboredo, Juan C., 2015. "Is there dependence and systemic risk between oil and renewable energy stock prices?," Energy Economics, Elsevier, vol. 48(C), pages 32-45.
    36. Smith Stegen, Karen, 2015. "Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis," Energy Policy, Elsevier, vol. 79(C), pages 1-8.
    37. Riesgo García, María Victoria & Krzemień, Alicja & Manzanedo del Campo, Miguel Ángel & Menéndez Álvarez, Mario & Gent, Malcolm Richard, 2017. "Rare earth elements mining investment: It is not all about China," Resources Policy, Elsevier, vol. 53(C), pages 66-76.
    38. Riesgo García, María Victoria & Krzemień, Alicja & Manzanedo del Campo, Miguel Ángel & Escanciano García-Miranda, Carmen & Sánchez Lasheras, Fernando, 2018. "Rare earth elements price forecasting by means of transgenic time series developed with ARIMA models," Resources Policy, Elsevier, vol. 59(C), pages 95-102.
    39. Elshkaki, Ayman & Graedel, T.E., 2014. "Dysprosium, the balance problem, and wind power technology," Applied Energy, Elsevier, vol. 136(C), pages 548-559.
    40. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    41. Grandell, Leena & Lehtilä, Antti & Kivinen, Mari & Koljonen, Tiina & Kihlman, Susanna & Lauri, Laura S., 2016. "Role of critical metals in the future markets of clean energy technologies," Renewable Energy, Elsevier, vol. 95(C), pages 53-62.
    42. del Río, Pablo & Burguillo, Mercedes, 2009. "An empirical analysis of the impact of renewable energy deployment on local sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1314-1325, August.
    43. Paulick, Holger & Machacek, Erika, 2017. "The global rare earth element exploration boom: An analysis of resources outside of China and discussion of development perspectives," Resources Policy, Elsevier, vol. 52(C), pages 134-153.
    44. Reddy, V. Ratna & Uitto, Juha I. & Frans, Dirk R. & Matin, Nilufar, 2006. "Achieving global environmental benefits through local development of clean energy? The case of small hilly hydel in India," Energy Policy, Elsevier, vol. 34(18), pages 4069-4080, December.
    45. Helbig, Christoph & Bradshaw, Alex M. & Kolotzek, Christoph & Thorenz, Andrea & Tuma, Axel, 2016. "Supply risks associated with CdTe and CIGS thin-film photovoltaics," Applied Energy, Elsevier, vol. 178(C), pages 422-433.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianyun Chen & Wenxing Zhu & Xianping Luo, 2022. "Government Reserve of Rare Earths under Total Quota Management: An Interactive Game between Government and Rare-Earth Firms," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    2. Chen, Jinyu & Liang, Zhipeng & Ding, Qian & Liu, Zhenhua, 2022. "Quantile connectedness between energy, metal, and carbon markets," International Review of Financial Analysis, Elsevier, vol. 83(C).
    3. Rocco Caferra & Pasquale Marcello Falcone & Andrea Morone & Piergiuseppe Morone, 2022. "Is COVID-19 anticipating the future? Evidence from investors’ sustainable orientation," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 12(1), pages 177-196, March.
    4. Zhang, Hui-min & Feng, Tian-tian & Yang, Yi-sheng, 2022. "Influencing factors and critical path of inter-sector embodied heavy rare earth consumption in China," Resources Policy, Elsevier, vol. 75(C).
    5. Hanif, Waqas & Mensi, Walid & Gubareva, Mariya & Teplova, Tamara, 2023. "Impacts of COVID-19 on dynamic return and volatility spillovers between rare earth metals and renewable energy stock markets," Resources Policy, Elsevier, vol. 80(C).
    6. Zhou, Mei-Jing & Huang, Jian-Bai & Chen, Jin-Yu, 2022. "Time and frequency spillovers between political risk and the stock returns of China's rare earths," Resources Policy, Elsevier, vol. 75(C).
    7. Chen, Jinyu & Liang, Zhipeng & Ding, Qian & Liu, Zhenhua, 2022. "Extreme spillovers among fossil energy, clean energy, and metals markets: Evidence from a quantile-based analysis," Energy Economics, Elsevier, vol. 107(C).
    8. Zhu, Mingxue & Zhang, Hua & Xing, Wanli & Zhou, Xuanru & Wang, Lu & Sun, Haoyu, 2023. "Research on price transmission in Chinese mining stock market: Based on industry," Resources Policy, Elsevier, vol. 83(C).
    9. Zheng, Biao & Zhang, Yuquan W. & Qu, Fang & Geng, Yong & Yu, Haishan, 2022. "Do rare earths drive volatility spillover in crude oil, renewable energy, and high-technology markets? — A wavelet-based BEKK- GARCH-X approach," Energy, Elsevier, vol. 251(C).
    10. Yanjing Jia & Chao Ding & Zhiliang Dong, 2021. "Transmission Mechanism of Stock Price Fluctuation in the Rare Earth Industry Chain," Sustainability, MDPI, vol. 13(22), pages 1-21, November.
    11. Chen, Ying & Zhu, Xuehong & Chen, Jinyu, 2022. "Spillovers and hedging effectiveness of non-ferrous metals and sub-sectoral clean energy stocks in time and frequency domain," Energy Economics, Elsevier, vol. 111(C).
    12. Yahya, Farzan & Abbas, Ghulam & Lee, Chien-Chiang, 2023. "Asymmetric effects and volatility transmission from metals markets to solar energy stocks: Evidence from DCC, ADCC, and quantile regression approach," Resources Policy, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yufeng & Zheng, Biao & Qu, Fang, 2020. "Modeling the nexus of crude oil, new energy and rare earth in China: An asymmetric VAR-BEKK (DCC)-GARCH approach," Resources Policy, Elsevier, vol. 65(C).
    2. Zhou, Mei-Jing & Huang, Jian-Bai & Chen, Jin-Yu, 2022. "Time and frequency spillovers between political risk and the stock returns of China's rare earths," Resources Policy, Elsevier, vol. 75(C).
    3. Song, Ying & Bouri, Elie & Ghosh, Sajal & Kanjilal, Kakali, 2021. "Rare earth and financial markets: Dynamics of return and volatility connectedness around the COVID-19 outbreak," Resources Policy, Elsevier, vol. 74(C).
    4. Reboredo, Juan C. & Ugolini, Andrea, 2020. "Price spillovers between rare earth stocks and financial markets," Resources Policy, Elsevier, vol. 66(C).
    5. Umar, Muhammad & Farid, Saqib & Naeem, Muhammad Abubakr, 2022. "Time-frequency connectedness among clean-energy stocks and fossil fuel markets: Comparison between financial, oil and pandemic crisis," Energy, Elsevier, vol. 240(C).
    6. Chen, Jinyu & Liang, Zhipeng & Ding, Qian & Liu, Zhenhua, 2022. "Extreme spillovers among fossil energy, clean energy, and metals markets: Evidence from a quantile-based analysis," Energy Economics, Elsevier, vol. 107(C).
    7. Matteo Foglia & Eliana Angelini, 2020. "Volatility Connectedness between Clean Energy Firms and Crude Oil in the COVID-19 Era," Sustainability, MDPI, vol. 12(23), pages 1-22, November.
    8. Capucine Nobletz, 2021. "Return spillovers between green energy indexes and financial markets: a first sectoral approach," EconomiX Working Papers 2021-24, University of Paris Nanterre, EconomiX.
    9. Zheng, Biao & Zhang, Yuquan W. & Qu, Fang & Geng, Yong & Yu, Haishan, 2022. "Do rare earths drive volatility spillover in crude oil, renewable energy, and high-technology markets? — A wavelet-based BEKK- GARCH-X approach," Energy, Elsevier, vol. 251(C).
    10. Madaleno, Mara & Taskin, Dilvin & Dogan, Eyup & Tzeremes, Panayiotis, 2023. "A dynamic connectedness analysis between rare earth prices and renewable energy," Resources Policy, Elsevier, vol. 85(PB).
    11. Naeem, Muhammad Abubakr & Peng, Zhe & Suleman, Mouhammed Tahir & Nepal, Rabindra & Shahzad, Syed Jawad Hussain, 2020. "Time and frequency connectedness among oil shocks, electricity and clean energy markets," Energy Economics, Elsevier, vol. 91(C).
    12. Hanif, Waqas & Mensi, Walid & Gubareva, Mariya & Teplova, Tamara, 2023. "Impacts of COVID-19 on dynamic return and volatility spillovers between rare earth metals and renewable energy stock markets," Resources Policy, Elsevier, vol. 80(C).
    13. Ren, Kaipeng & Tang, Xu & Höök, Mikael, 2021. "Evaluating metal constraints for photovoltaics: Perspectives from China’s PV development," Applied Energy, Elsevier, vol. 282(PA).
    14. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2017. "Oil shocks and stock markets: Dynamic connectedness under the prism of recent geopolitical and economic unrest," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 1-26.
    15. Elsayed, Ahmed H. & Nasreen, Samia & Tiwari, Aviral Kumar, 2020. "Time-varying co-movements between energy market and global financial markets: Implication for portfolio diversification and hedging strategies," Energy Economics, Elsevier, vol. 90(C).
    16. Urom, Christian & Mzoughi, Hela & Ndubuisi, Gideon & Guesmi, Khaled, 2022. "Directional predictability and time-frequency spillovers among clean energy sectors and oil price uncertainty," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 326-341.
    17. Evrim Mandacı, Pınar & Cagli, Efe Çaglar & Taşkın, Dilvin, 2020. "Dynamic connectedness and portfolio strategies: Energy and metal markets," Resources Policy, Elsevier, vol. 68(C).
    18. Tiantian Liu & Shigeyuki Hamori, 2020. "Spillovers to Renewable Energy Stocks in the US and Europe: Are They Different?," Energies, MDPI, vol. 13(12), pages 1-28, June.
    19. Zheng, Biao & Zhang, Yuquan W. & Yin, Haitao & Geng, Yong, 2021. "The limited role of stock market in financing new energy development in China: An investigation using firms’ high-frequency data," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 651-667.
    20. Dai, Zhifeng & Zhu, Haoyang & Zhang, Xinhua, 2022. "Dynamic spillover effects and portfolio strategies between crude oil, gold and Chinese stock markets related to new energy vehicle," Energy Economics, Elsevier, vol. 109(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:71:y:2021:i:c:s0301420721000131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.