IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v61y2019icp49-66.html
   My bibliography  Save this article

Causality between metal prices: Is joint consumption a more important determinant than joint production of main and by-product metals?

Author

Listed:
  • Shammugam, Shivenes
  • Rathgeber, Andreas
  • Schlegl, Thomas

Abstract

Research on metal price determinants has been driven by increasing price volatilities and realization of metals as financial assets. A sound understanding of metal prices enables producers, consumers, policy makers and traders to anticipate and better prepare themselves for short and long-term price trends. Metal prices are related to each other via their nature of either being jointly produced or jointly consumed. While the effects of joint production of metals have been the subject of increased analysis lately, the effects of joint consumption on metal prices have yet to be studied systematically. Therefore, we aim to analyze the effects of both joint consumption and joint production on the causality relationship between metal prices. In doing so, we use the Toda Yamamoto approach to conduct pair-wise Granger-causality tests between various metals that are either jointly produced or jointly consumed. Our results indicate that joint-consumption of metals has a significant impact on the Granger-causality relationship between metals and that it is indeed an important determinant of metal prices.

Suggested Citation

  • Shammugam, Shivenes & Rathgeber, Andreas & Schlegl, Thomas, 2019. "Causality between metal prices: Is joint consumption a more important determinant than joint production of main and by-product metals?," Resources Policy, Elsevier, vol. 61(C), pages 49-66.
  • Handle: RePEc:eee:jrpoli:v:61:y:2019:i:c:p:49-66
    DOI: 10.1016/j.resourpol.2019.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420718304665
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2019.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Breusch, T S, 1978. "Testing for Autocorrelation in Dynamic Linear Models," Australian Economic Papers, Wiley Blackwell, vol. 17(31), pages 334-355, December.
    2. Rossen, Anja, 2015. "What are metal prices like? Co-movement, price cycles and long-run trends," Resources Policy, Elsevier, vol. 45(C), pages 255-276.
    3. Jordan, Brett, 2018. "Economics literature on joint production of minerals: A survey," Resources Policy, Elsevier, vol. 55(C), pages 20-28.
    4. Campbell, Gary A., 1985. "The role of co-products in stabilizing the metal mining industry," Resources Policy, Elsevier, vol. 11(4), pages 267-274, December.
    5. Fizaine, Florian, 2013. "Byproduct production of minor metals: Threat or opportunity for the development of clean technologies? The PV sector as an illustration," Resources Policy, Elsevier, vol. 38(3), pages 373-383.
    6. Jordan, Brett W, 2017. "Companions and competitors: Joint metal-supply relationships in gold, silver, copper, lead and zinc mines," Resource and Energy Economics, Elsevier, vol. 49(C), pages 233-250.
    7. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    8. repec:eco:journ1:2014-03-04 is not listed on IDEAS
    9. Fabian Lutzenberger & Benedikt Gleich & Herbert G. Mayer & Christian Stepanek & Andreas W. Rathgeber, 2017. "Metals: resources or financial assets? A multivariate cross-sectional analysis," Empirical Economics, Springer, vol. 53(3), pages 927-958, November.
    10. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    11. Krausmann, Fridolin & Gingrich, Simone & Eisenmenger, Nina & Erb, Karl-Heinz & Haberl, Helmut & Fischer-Kowalski, Marina, 2009. "Growth in global materials use, GDP and population during the 20th century," Ecological Economics, Elsevier, vol. 68(10), pages 2696-2705, August.
    12. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    13. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    14. Doran, Howard E. & Rambaldi, Alicia N., 1997. "Applying linear time-varying constraints to econometric models: With an application to demand systems," Journal of Econometrics, Elsevier, vol. 79(1), pages 83-95, July.
    15. Wolde-Rufael, Yemane, 2006. "Electricity consumption and economic growth: a time series experience for 17 African countries," Energy Policy, Elsevier, vol. 34(10), pages 1106-1114, July.
    16. David Giles, 1997. "Causality between the measured and underground economies in New Zealand," Applied Economics Letters, Taylor & Francis Journals, vol. 4(1), pages 63-67.
    17. Klotz, Philipp & Lin, Tsoyu Calvin & Hsu, Shih-Hsun, 2014. "Global commodity prices, economic activity and monetary policy: The relevance of China," Resources Policy, Elsevier, vol. 42(C), pages 1-9.
    18. Ghosh, Sajal, 2006. "Steel consumption and economic growth: Evidence from India," Resources Policy, Elsevier, vol. 31(1), pages 7-11, March.
    19. Jain, Anshul & Ghosh, Sajal, 2013. "Dynamics of global oil prices, exchange rate and precious metal prices in India," Resources Policy, Elsevier, vol. 38(1), pages 88-93.
    20. Nazlioglu, Saban & Soytas, Ugur, 2011. "World oil prices and agricultural commodity prices: Evidence from an emerging market," Energy Economics, Elsevier, vol. 33(3), pages 488-496, May.
    21. Mustafa Serdar Basoglu & Turhan Korkmaz & Emrah Ismail Cevik, 2014. "London Metal Exchange: Causality Relationship between the Price Series of Non-Ferrous Metal Contracts," International Journal of Economics and Financial Issues, Econjournals, vol. 4(4), pages 726-734.
    22. Godfrey, Leslie G, 1978. "Testing for Higher Order Serial Correlation in Regression Equations When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1303-1310, November.
    23. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    24. P.K. Mishra, 2014. "Gold Price and Capital Market Movement in India: The Toda–Yamamoto Approach," Global Business Review, International Management Institute, vol. 15(1), pages 37-45, March.
    25. Neill Fortune, J., 1987. "The inflation rate of the price of gold, expected prices and interest rates," Journal of Macroeconomics, Elsevier, vol. 9(1), pages 71-82.
    26. Labys, W. C. & Achouch, A. & Terraza, M., 1999. "Metal prices and the business cycle," Resources Policy, Elsevier, vol. 25(4), pages 229-238, December.
    27. Chan, M W Luke & Mountain, Dean C, 1988. "The Interactive and Causal Relationships Involving Precious Metal," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 69-77, January.
    28. Fizaine, Florian, 2015. "Minor metals and organized markets: News highlights about the consequences of establishing a futures market in a thin market with a dual trading price system," Resources Policy, Elsevier, vol. 46(P2), pages 59-70.
    29. Chaido Dritsaki, 2017. "Toda-Yamamoto Causality Test between Inflation and Nominal Interest Rates: Evidence from Three Countries of Europe," International Journal of Economics and Financial Issues, Econjournals, vol. 7(6), pages 120-129.
    30. R. Scott Hacker & Abdulnasser Hatemi-J, 2006. "Tests for causality between integrated variables using asymptotic and bootstrap distributions: theory and application," Applied Economics, Taylor & Francis Journals, vol. 38(13), pages 1489-1500.
    31. Manisha Pradhananga, 2016. "Financialization and the rise in co-movement of commodity prices," International Review of Applied Economics, Taylor & Francis Journals, vol. 30(5), pages 547-566, September.
    32. Lutkepohl, Helmut, 1982. "Non-causality due to omitted variables," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 367-378, August.
    33. Claudia R. Binder & T. E. Graedel & Barbara Reck, 2006. "Explanatory Variables for per Capita Stocks and Flows of Copper and Zinc," Journal of Industrial Ecology, Yale University, vol. 10(1‐2), pages 111-132, January.
    34. Afflerbach, Patrick & Fridgen, Gilbert & Keller, Robert & Rathgeber, Andreas W. & Strobel, Florian, 2014. "The by-product effect on metal markets – New insights to the price behavior of minor metals," Resources Policy, Elsevier, vol. 42(C), pages 35-44.
    35. Jeffrey A. Frankel, 1986. "Expectations and Commodity Price Dynamics: The Overshooting Model," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(2), pages 344-348.
    36. David I. Stern, 2011. "From Correlation to Granger Causality," Crawford School Research Papers 1113, Crawford School of Public Policy, The Australian National University.
    37. Jerrett, Daniel & Cuddington, John T., 2008. "Broadening the statistical search for metal price super cycles to steel and related metals," Resources Policy, Elsevier, vol. 33(4), pages 188-195, December.
    38. Redlinger, Michael & Eggert, Roderick, 2016. "Volatility of by-product metal and mineral prices," Resources Policy, Elsevier, vol. 47(C), pages 69-77.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khalfaoui, Rabeh & Tiwari, Aviral Kumar & Kablan, Sandrine & Hammoudeh, Shawkat, 2021. "Interdependence and lead-lag relationships between the oil price and metal markets: Fresh insights from the wavelet and quantile coherency approaches," Energy Economics, Elsevier, vol. 101(C).
    2. Song, Huiling & Wang, Chang & Lei, Xiaojie & Zhang, Hongwei, 2022. "Dynamic dependence between main-byproduct metals and the role of clean energy market," Energy Economics, Elsevier, vol. 108(C).
    3. Shao, Liuguo & Hu, Wenqin & Yang, Danhui, 2020. "The price relationship between main-byproduct metals from a multiscale nonlinear Granger causality perspective," Resources Policy, Elsevier, vol. 69(C).
    4. Kim, Kihyung, 2020. "Jointly produced metal markets are endogenously unstable," Resources Policy, Elsevier, vol. 66(C).
    5. Pradhan, Ashis Kumar & Mishra, Bibhuti Ranjan & Tiwari, Aviral Kumar & Hammoudeh, Shawkat, 2020. "Macroeconomic factors and frequency domain causality between Gold and Silver returns in India," Resources Policy, Elsevier, vol. 68(C).
    6. Christoph Helbig & Martin Bruckler & Andrea Thorenz & Axel Tuma, 2021. "An Overview of Indicator Choice and Normalization in Raw Material Supply Risk Assessments," Resources, MDPI, vol. 10(8), pages 1-26, August.
    7. Shao, Liuguo & Kou, Wenwen & Zhang, Hua, 2022. "The evolution of the global cobalt and lithium trade pattern and the impacts of the low-cobalt technology of lithium batteries based on multiplex network," Resources Policy, Elsevier, vol. 76(C).
    8. Liu, Xueyong & Jiang, Cheng, 2020. "The dynamic volatility transmission in the multiscale spillover network of the international stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    9. Sun, Xiaotian & Fang, Wei & Gao, Xiangyun & An, Sufang & Liu, Siyao & Wu, Tao, 2021. "Time-varying causality inference of different nickel markets based on the convergent cross mapping method," Resources Policy, Elsevier, vol. 74(C).
    10. Abdulrazak Nur Mohamed & Idiris Sid Ali Mohamed, 2023. "Precious Metals and Oil Price Dynamics," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 119-128, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yıldırım, Ertugrul & Sukruoglu, Deniz & Aslan, Alper, 2014. "Energy consumption and economic growth in the next 11 countries: The bootstrapped autoregressive metric causality approach," Energy Economics, Elsevier, vol. 44(C), pages 14-21.
    2. Abdulrazak Nur Mohamed & Idiris Sid Ali Mohamed, 2023. "Precious Metals and Oil Price Dynamics," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 119-128, November.
    3. Ahmad, Nisar & Aghdam, Reza FathollahZadeh & Butt, Irfan & Naveed, Amjad, 2020. "Citation-based systematic literature review of energy-growth nexus: An overview of the field and content analysis of the top 50 influential papers," Energy Economics, Elsevier, vol. 86(C).
    4. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, August.
    5. Mighri, Zouheir & Ragoubi, Hanen & Sarwar, Suleman & Wang, Yihan, 2022. "Quantile Granger causality between US stock market indices and precious metal prices," Resources Policy, Elsevier, vol. 76(C).
    6. Henryk Gurgul & Łukasz Lach & Roland Mestel, 2012. "The relationship between budgetary expenditure and economic growth in Poland," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 161-182, March.
    7. Man-Keun Kim & Kangil Lee, 2015. "Dynamic Interactions between Carbon and Energy Prices in the U.S. Regional Greenhouse Gas Initiative," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 494-501.
    8. Lukasz Lach, 2010. "Application of Bootstrap Methods in Investigation of Size of the Granger Causality Test for Integrated VAR Systems," Managing Global Transitions, University of Primorska, Faculty of Management Koper, vol. 8(2), pages 167-186.
    9. Ebenezer, Appiah Collins & Jatoe, John Baptist D. & Mensa-Bonsu, Akwasi, 2018. "Food Price Sensitivity To Changes In Petroleum Price And Exchange Rate In Ghana: A Cointegration Analysis," 2018 Conference (2nd), August 8-11, Kumasi, Ghana 277791, Ghana Association of Agricultural Economists.
    10. Le Fur, Eric, 2020. "Dynamics of the global fine art market prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 167-180.
    11. Hanan Naser, 2015. "Can Nuclear Energy Stimulates Economic Growth? Evidence from Highly Industrialised Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 164-173.
    12. Hatemi-J, Abdulnasser, 2020. "Asymmetric Panel Causality Tests with an Application to the Impact of Fiscal Policy on Economic Performance in Scandinavia," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 73(3), pages 389-404.
    13. Shahriyar Aliyev & Evžen Kočenda, 2023. "ECB monetary policy and commodity prices," Review of International Economics, Wiley Blackwell, vol. 31(1), pages 274-304, February.
    14. Donald W. Hayes & Cara S. Lown, 1990. "Another look at the credit-output link," Working Papers 9001, Federal Reserve Bank of Dallas.
    15. Naser, Hanan, 2014. "On the cointegration and causality between Oil market, Nuclear Energy Consumption, and Economic Growth: Evidence from Developed Countries," MPRA Paper 65252, University Library of Munich, Germany, revised 25 Mar 2015.
    16. Massa, Ricardo & Rosellón, Juan, 2020. "Linear and nonlinear Granger causality between electricity production and economic performance in Mexico," Energy Policy, Elsevier, vol. 142(C).
    17. Shyh-Wei Chen & Zixiong Xie & Ying Liao, 2018. "Energy consumption promotes economic growth or economic growth causes energy use in China? A panel data analysis," Empirical Economics, Springer, vol. 55(3), pages 1019-1043, November.
    18. Ewing, Bradley T. & Payne, James E. & Caporin, Massimilano, 2022. "The Asymmetric Impact of Oil Prices and Production on Drilling Rig Trajectory: A correction," Resources Policy, Elsevier, vol. 79(C).
    19. Karanfil, Fatih, 2008. "Energy consumption and economic growth revisited: Does the size of unrecorded economy matter?," Energy Policy, Elsevier, vol. 36(8), pages 3019-3025, August.
    20. Kim, Kihyung, 2020. "Jointly produced metal markets are endogenously unstable," Resources Policy, Elsevier, vol. 66(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:61:y:2019:i:c:p:49-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.