IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v34y2010i2p336-349.html
   My bibliography  Save this article

Risk factor contributions in portfolio credit risk models

Author

Listed:
  • Rosen, Dan
  • Saunders, David

Abstract

Determining contributions to overall portfolio risk is an important topic in risk management. For positions (instruments and sub-portfolios), this problem has been well studied, and a significant theory built, around the calculation of marginal contributions. We consider the problem of determining the contributions to portfolio risk of risk factors. This cannot be addressed through an immediate extension of techniques for position contributions, since the portfolio loss is a nonlinear function of the risk factors. We employ the Hoeffding decomposition of the portfolio loss into a sum of terms depending on the factors. This decomposition restores linearity, but includes terms arising from joint effects of groups of factors. These cross-factor terms provide information to risk managers, since they can be viewed as best hedges of the portfolio loss involving instruments of increasing complexity. We illustrate the technique on multi-factor portfolio credit risk models, where systematic factors represent industries, geographical sectors, etc.

Suggested Citation

  • Rosen, Dan & Saunders, David, 2010. "Risk factor contributions in portfolio credit risk models," Journal of Banking & Finance, Elsevier, vol. 34(2), pages 336-349, February.
  • Handle: RePEc:eee:jbfina:v:34:y:2010:i:2:p:336-349
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-4266(09)00196-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    2. Bonfim, Diana, 2009. "Credit risk drivers: Evaluating the contribution of firm level information and of macroeconomic dynamics," Journal of Banking & Finance, Elsevier, vol. 33(2), pages 281-299, February.
    3. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    4. Dirk Tasche, 2005. "Measuring sectoral diversification in an asymptotic multi-factor framework," Papers physics/0505142, arXiv.org, revised Jul 2006.
    5. Michael Kalkbrener, 2005. "An Axiomatic Approach To Capital Allocation," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 425-437, July.
    6. Bellini, Fabio & Rosazza Gianin, Emanuela, 2008. "On Haezendonck risk measures," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 986-994, June.
    7. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    8. Alexander Cherny & Raphael Douady & Stanislav Molchanov, 2010. "On measuring nonlinear risk with scarce observations," Finance and Stochastics, Springer, vol. 14(3), pages 375-395, September.
    9. Medema, Lydian & Koning, Ruud H. & Lensink, Robert, 2009. "A practical approach to validating a PD model," Journal of Banking & Finance, Elsevier, vol. 33(4), pages 701-708, April.
    10. Alexandre Adam & Mohamed Houkari & Jean-Paul Laurent, 2008. "Spectral risk measures and portfolio selection," Post-Print hal-03676385, HAL.
    11. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    12. Rosen, Dan & Saunders, David, 2009. "Analytical methods for hedging systematic credit risk with linear factor portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 37-52, January.
    13. Susanne Emmer & Dirk Tasche, 2003. "Calculating credit risk capital charges with the one-factor model," Papers cond-mat/0302402, arXiv.org, revised Jan 2005.
    14. Lemieux, Christiane & L’Ecuyer, Pierre, 2001. "On selection criteria for lattice rules and other quasi-Monte Carlo point sets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 55(1), pages 139-148.
    15. Dirk Tasche, 2007. "Capital Allocation to Business Units and Sub-Portfolios: the Euler Principle," Papers 0708.2542, arXiv.org, revised Jun 2008.
    16. Sandro Merino & Mark Nyfeler, 2004. "Applying importance sampling for estimating coherent credit risk contributions," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 199-207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed A. Ayadi & Hatem Ben-Ameur & Nabil Channouf & Quang Khoi Tran, 2019. "NORTA for portfolio credit risk," Annals of Operations Research, Springer, vol. 281(1), pages 99-119, October.
    2. Aussenegg, Wolfgang & Resch, Florian & Winkler, Gerhard, 2011. "Pitfalls and remedies in testing the calibration quality of rating systems," Journal of Banking & Finance, Elsevier, vol. 35(3), pages 698-708, March.
    3. Arvid Raknerud & Bjørn Helge Vatne, 2012. "The relation between banks' funding costs, retail rates and loan volumes: An analysis of Norwegian bank micro data," Working Paper 2012/17, Norges Bank.
    4. Lee, Yongwoong & Yang, Kisung, 2019. "Modeling diversification and spillovers of loan portfolios' losses by LHP approximation and copula," International Review of Financial Analysis, Elsevier, vol. 66(C).
    5. Buch, Arne & Dorfleitner, Gregor & Wimmer, Maximilian, 2011. "Risk capital allocation for RORAC optimization," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 3001-3009, November.
    6. Katja Schilling & Daniel Bauer & Marcus C. Christiansen & Alexander Kling, 2020. "Decomposing Dynamic Risks into Risk Components," Management Science, INFORMS, vol. 66(12), pages 5738-5756, December.
    7. Meng-Jou Lu & Cathy Yi-Hsuan Chen & Wolfgang Karl Härdle, 2017. "Copula-based factor model for credit risk analysis," Review of Quantitative Finance and Accounting, Springer, vol. 49(4), pages 949-971, November.
    8. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    9. Cossette, Hélène & Marceau, Etienne & Trufin, Julien & Zuyderhoff, Pierre, 2020. "Ruin-based risk measures in discrete-time risk models," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 246-261.
    10. Gary van Vuuren & Riaan de Jongh, 2017. "A comparison of risk aggregation estimates using copulas and Fleishman distributions," Applied Economics, Taylor & Francis Journals, vol. 49(17), pages 1715-1731, April.
    11. Karabey, Uǧur & Kleinow, Torsten & Cairns, Andrew J.G., 2014. "Factor risk quantification in annuity models," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 34-45.
    12. Kao, Lie-Jane, 2015. "A portfolio-invariant capital allocation scheme penalizing concentration risk," Economic Modelling, Elsevier, vol. 51(C), pages 560-570.
    13. Lee, Yongwoong & Poon, Ser-Huang, 2014. "Forecasting and decomposition of portfolio credit risk using macroeconomic and frailty factors," Journal of Economic Dynamics and Control, Elsevier, vol. 41(C), pages 69-92.
    14. Arvid Raknerud & Bjørn Helge Vatne, 2013. "The relations between bank-funding costs, retail rates, and loan volumes. Evidence form Norwegian microdata," Discussion Papers 742, Statistics Norway, Research Department.
    15. Andreas Tsanakas & Pietro Millossovich, 2016. "Sensitivity Analysis Using Risk Measures," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 30-48, January.
    16. Christoph Frei, 2020. "A New Approach to Risk Attribution and Its Application in Credit Risk Analysis," Risks, MDPI, vol. 8(2), pages 1-13, June.
    17. Marcus C. Christiansen, 2021. "Time-dynamic evaluations under non-monotone information generated by marked point processes," Finance and Stochastics, Springer, vol. 25(3), pages 563-596, July.
    18. Targino, Rodrigo S. & Peters, Gareth W. & Shevchenko, Pavel V., 2015. "Sequential Monte Carlo Samplers for capital allocation under copula-dependent risk models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 206-226.
    19. Regele, Fabian & Gründl, Helmut, 2021. "Asset concentration risk and insurance solvency regulation," ICIR Working Paper Series 40/21, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR).
    20. Kang, Woo-Young & Poshakwale, Sunil, 2019. "A new approach to optimal capital allocation for RORAC maximization in banks," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 153-165.
    21. Miloš Božović, 2021. "Sistemska Komponenta Kreditnog Rizika: Metod Kopula (Systemic Component Of Credit Risk: A Copula-Based Method)," Ekonomske ideje i praksa, Faculty of Economics and Business, University of Belgrade, issue 41, pages 1-13, June.
    22. Wegmüller, Philipp & Glocker, Christian & Guggia, Valentino, 2023. "Weekly economic activity: Measurement and informational content," International Journal of Forecasting, Elsevier, vol. 39(1), pages 228-243.
    23. Lu, Meng-Jou & Chen, Cathy Yi-Hsuan & Härdle, Karl Wolfgang & Härdle, 2015. "Copula-Based Factor Model for Credit Risk Analysis," SFB 649 Discussion Papers SFB649DP2015-042, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    24. Meng-Jou Lu & Cathy Yi-Hsuan Chen & Wolfgang Karl Hardle, 2020. "Copula-Based Factor Model for Credit Risk Analysis," Papers 2009.12092, arXiv.org, revised Oct 2020.
    25. Laurent, Jean-Paul & Sestier, Michael & Thomas, Stéphane, 2016. "Trading book and credit risk: How fundamental is the Basel review?," Journal of Banking & Finance, Elsevier, vol. 73(C), pages 211-223.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Lie-Jane, 2015. "A portfolio-invariant capital allocation scheme penalizing concentration risk," Economic Modelling, Elsevier, vol. 51(C), pages 560-570.
    2. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    3. Puzanova, Natalia & Düllmann, Klaus, 2013. "Systemic risk contributions: A credit portfolio approach," Journal of Banking & Finance, Elsevier, vol. 37(4), pages 1243-1257.
    4. Targino, Rodrigo S. & Peters, Gareth W. & Shevchenko, Pavel V., 2015. "Sequential Monte Carlo Samplers for capital allocation under copula-dependent risk models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 206-226.
    5. Nathan Lassance & Frédéric Vrins, 2021. "Minimum Rényi entropy portfolios," Annals of Operations Research, Springer, vol. 299(1), pages 23-46, April.
    6. Gürtler, Marc & Hibbeln, Martin & Vöhringer, Clemens, 2007. "Measuring concentration risk for regulatory purposes," Working Papers IF26V4, Technische Universität Braunschweig, Institute of Finance.
    7. Suzanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What Is the Best Risk Measure in Practice? A Comparison of Standard Measures," Working Papers hal-00921283, HAL.
    8. Susanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What is the best risk measure in practice? A comparison of standard measures," Papers 1312.1645, arXiv.org, revised Apr 2015.
    9. Avramidis, Panagiotis & Pasiouras, Fotios, 2015. "Calculating systemic risk capital: A factor model approach," Journal of Financial Stability, Elsevier, vol. 16(C), pages 138-150.
    10. Brandtner, Mario & Kürsten, Wolfgang, 2015. "Decision making with Expected Shortfall and spectral risk measures: The problem of comparative risk aversion," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 268-280.
    11. Alejandro Ferrer Pérez & José Casals Carro & Sonia Sotoca López, 2014. "Linking the problems of estimating and allocating unconditional capital," Documentos de Trabajo del ICAE 2014-13, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    12. Baule, Rainer, 2014. "Allocation of risk capital on an internal market," European Journal of Operational Research, Elsevier, vol. 234(1), pages 186-196.
    13. Wentao Hu & Cuixia Chen & Yufeng Shi & Ze Chen, 2022. "A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 831-874, June.
    14. S. Geissel & H. Graf & J. Herbinger & F. T. Seifried, 2022. "Portfolio optimization with optimal expected utility risk measures," Annals of Operations Research, Springer, vol. 309(1), pages 59-77, February.
    15. Omid Momen & Akbar Esfahanipour & Abbas Seifi, 2020. "A robust behavioral portfolio selection: model with investor attitudes and biases," Operational Research, Springer, vol. 20(1), pages 427-446, March.
    16. Yu Takata, 2018. "Application of Granularity Adjustment Approximation Method to Incremental Value-at-Risk in Concentrated Portfolios," Economics Bulletin, AccessEcon, vol. 38(4), pages 2320-2330.
    17. Weiping Wu & Yu Lin & Jianjun Gao & Ke Zhou, 2023. "Mean-variance hybrid portfolio optimization with quantile-based risk measure," Papers 2303.15830, arXiv.org, revised Apr 2023.
    18. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    19. Taras Bodnar & Mathias Lindholm & Erik Thorsén & Joanna Tyrcha, 2021. "Quantile-based optimal portfolio selection," Computational Management Science, Springer, vol. 18(3), pages 299-324, July.
    20. Brandtner, Mario & Kürsten, Wolfgang & Rischau, Robert, 2018. "Entropic risk measures and their comparative statics in portfolio selection: Coherence vs. convexity," European Journal of Operational Research, Elsevier, vol. 264(2), pages 707-716.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:34:y:2010:i:2:p:336-349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.