IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v59y2017icp83-99.html
   My bibliography  Save this article

Airline new route selection based on interval type-2 fuzzy MCDM: AÂ case study of new route between Turkey- North American region destinations

Author

Listed:
  • Deveci, Muhammet
  • Demirel, Nihan Çetin
  • AhmetoÄŸlu, Emine

Abstract

Conditions of global competition in the aviation sector force airlines to be internationally-minded instead of competing only in their domestic markets. Thus, airlines are interested in potential international markets instead of domestic markets. This study focuses on the process of new route selection, which has a high impact on the revenue and passenger numbers of airlines. An airline company in Turkey plans to launch a new route at an airport in the North American region. Any suboptimal decision has a huge effect on the outcomes of airlines in the market. Therefore, making an optimal decision, which is compatible with the airline company's goal, is highly important. In this study, a decision analysis is applied in terms of the selection of a new route from five different destinations by using an interval type-2 fuzzy TOPSIS method. A multi-criteria decision-making (MCDM) method is used in order to identify the aspects of the new route's feasibility. Finally, a real case study is shown to verify the proposed method and to demonstrate its practicality and feasibility. The results show that the MCDM approach is a useful tool for decision-makers in terms of selecting potential airports for route analysis.

Suggested Citation

  • Deveci, Muhammet & Demirel, Nihan Çetin & AhmetoÄŸlu, Emine, 2017. "Airline new route selection based on interval type-2 fuzzy MCDM: A case study of new route between Turkey- North American region destinations," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 83-99.
  • Handle: RePEc:eee:jaitra:v:59:y:2017:i:c:p:83-99
    DOI: 10.1016/j.jairtraman.2016.11.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699716303337
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2016.11.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barros, Carlos Pestana & Wanke, Peter, 2015. "An analysis of African airlines efficiency with two-stage TOPSIS and neural networks," Journal of Air Transport Management, Elsevier, vol. 44, pages 90-102.
    2. Garg, Chandra Prakash, 2016. "A robust hybrid decision model for evaluation and selection of the strategic alliance partner in the airline industry," Journal of Air Transport Management, Elsevier, vol. 52(C), pages 55-66.
    3. Wanke, Peter & Pestana Barros, Carlos & Chen, Zhongfei, 2015. "An analysis of Asian airlines efficiency with two-stage TOPSIS and MCMC generalized linear mixed models," International Journal of Production Economics, Elsevier, vol. 169(C), pages 110-126.
    4. Nihan Çetin Demirel & Muhammet Deveci & Gizem Eser, 2016. "Comparative analysis of fuzzy multi-criteria decision making for location selection of Textile plant in Turkey," Proceedings of International Academic Conferences 4006524, International Institute of Social and Economic Sciences.
    5. Philipp Goedeking, 2010. "Networks in Aviation," Springer Books, Springer, number 978-3-642-13764-8, December.
    6. Brueckner, Jan K & Spiller, Pablo T, 1994. "Economies of Traffic Density in the Deregulated Airline Industry," Journal of Law and Economics, University of Chicago Press, vol. 37(2), pages 379-415, October.
    7. Chang, Yu-Hern & Yeh, Chung-Hsing, 2002. "A survey analysis of service quality for domestic airlines," European Journal of Operational Research, Elsevier, vol. 139(1), pages 166-177, May.
    8. Celik, Erkan & Bilisik, Ozge Nalan & Erdogan, Melike & Gumus, Alev Taskin & Baracli, Hayri, 2013. "An integrated novel interval type-2 fuzzy MCDM method to improve customer satisfaction in public transportation for Istanbul," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 28-51.
    9. Celik, Erkan & Aydin, Nezir & Gumus, Alev Taskin, 2014. "A multiattribute customer satisfaction evaluation approach for rail transit network: A real case study for Istanbul, Turkey," Transport Policy, Elsevier, vol. 36(C), pages 283-293.
    10. Kuo, Ming-Shin, 2011. "A novel interval-valued fuzzy MCDM method for improving airlines’ service quality in Chinese cross-strait airlines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1177-1193.
    11. Douglas W. Caves & Laurits R. Christensen & Michael W. Tretheway, 1984. "Economies of Density versus Economies of Scale: Why Trunk and Local Service Airline Costs Differ," RAND Journal of Economics, The RAND Corporation, vol. 15(4), pages 471-489, Winter.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksandar Aleksić & Danijela Tadić, 2023. "Industrial and Management Applications of Type-2 Multi-Attribute Decision-Making Techniques Extended with Type-2 Fuzzy Sets from 2013 to 2022," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
    2. Kiracı, Kasım & Akan, Ercan, 2020. "Aircraft selection by applying AHP and TOPSIS in interval type-2 fuzzy sets," Journal of Air Transport Management, Elsevier, vol. 89(C).
    3. Mahmut BAKIR & Şahap AKAN & Kasım KIRACI & Darjan KARABASEVIC & Dragisa STANUJKIC & Gabrijela POPOVIC, 2020. "Multiple-Criteria Approach of the Operational Performance Evaluation in the Airline Industry: Evidence from the Emerging Markets," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 149-172, July.
    4. Ta-Chung Chu & Miroslav Kysely, 2021. "Ranking objectives of advertisements on Facebook by a fuzzy TOPSIS method," Electronic Commerce Research, Springer, vol. 21(4), pages 881-916, December.
    5. Deveci, Muhammet & Özcan, Ender & John, Robert & Öner, Sultan Ceren, 2018. "Interval type-2 hesitant fuzzy set method for improving the service quality of domestic airlines in Turkey," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 83-98.
    6. Sahil Kashyap & Bartosz Paradowski & Neeraj Gandotra & Namita Saini & Wojciech Sałabun, 2024. "A Novel Trigonometric Entropy Measure Based on the Complex Proportional Assessment Technique for Pythagorean Fuzzy Sets," Energies, MDPI, vol. 17(2), pages 1-18, January.
    7. Dožić, Slavica & Lutovac, Tatjana & Kalić, Milica, 2018. "Fuzzy AHP approach to passenger aircraft type selection," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 165-175.
    8. Ur Rehman, Obaid & Ali, Yousaf, 2021. "Optimality study of China’s crude oil imports through China Pakistan economic corridor using fuzzy TOPSIS and Cost-Benefit analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    9. Chang, Yu-Chun & Lee, Wei-Hao & Wu, Chi-Hung, 2019. "Airline new route selection using compromise programming - The case of Taiwan-Europe," Journal of Air Transport Management, Elsevier, vol. 76(C), pages 10-20.
    10. Huseyin Kocak & Atalay Caglar & Gulin Zeynep Oztas, 2018. "Euclidean Best–Worst Method and Its Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1587-1605, September.
    11. Artūras Kaklauskas & Audrius Banaitis & Fernando A. F. Ferreira & João J. M. Ferreira & Dilanthi Amaratunga & Natalija Lepkova & Ieva Ubartė & Nerija Banaitienė, 2018. "An Evaluation System for University–Industry Partnership Sustainability: Enhancing Options for Entrepreneurial Universities," Sustainability, MDPI, vol. 10(1), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deveci, Muhammet & Özcan, Ender & John, Robert & Öner, Sultan Ceren, 2018. "Interval type-2 hesitant fuzzy set method for improving the service quality of domestic airlines in Turkey," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 83-98.
    2. Aydin, Nezir & Celik, Erkan & Gumus, Alev Taskin, 2015. "A hierarchical customer satisfaction framework for evaluating rail transit systems of Istanbul," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 61-81.
    3. Gudiel Pineda, Pedro Jose & Liou, James J.H. & Hsu, Chao-Che & Chuang, Yen-Ching, 2018. "An integrated MCDM model for improving airline operational and financial performance," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 103-117.
    4. Wang, Xiyan(Jamie), 2016. "1-Hub, 2-hub or fully connected network? A theoretical analysis of the optimality of airline network structure," Economics of Transportation, Elsevier, vol. 5(C), pages 12-23.
    5. Wanke, Peter & Barros, C.P., 2016. "Efficiency in Latin American airlines: A two-stage approach combining Virtual Frontier Dynamic DEA and Simplex Regression," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 93-103.
    6. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
    7. Tsionas, Mike G. & Chen, Zhongfei & Wanke, Peter, 2017. "A structural vector autoregressive model of technical efficiency and delays with an application to Chinese airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 1-10.
    8. Mahmut BAKIR & Şahap AKAN & Kasım KIRACI & Darjan KARABASEVIC & Dragisa STANUJKIC & Gabrijela POPOVIC, 2020. "Multiple-Criteria Approach of the Operational Performance Evaluation in the Airline Industry: Evidence from the Emerging Markets," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 149-172, July.
    9. Lin, Ming Hsin & Zhang, Anming, 2016. "Hub congestion pricing: Discriminatory passenger charges," Economics of Transportation, Elsevier, vol. 5(C), pages 37-48.
    10. Lin, Zhibin & Vlachos, Ilias, 2018. "An advanced analytical framework for improving customer satisfaction: A case of air passengers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 185-195.
    11. Betancor, Ofelia & Carmona, Miguel & Macário, Rosário & Nash, Chris, 2005. "Operating Costs," Research in Transportation Economics, Elsevier, vol. 14(1), pages 85-124, January.
    12. Xia, Wenyi & Zhang, Anming, 2016. "High-speed rail and air transport competition and cooperation: A vertical differentiation approach," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 456-481.
    13. Anming Zhang & Yimin Zhang & Joseph A. Clougherty, 2011. "Competition and Regulation in Air Transport," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 35, Edward Elgar Publishing.
    14. Claudio Agostini, 2005. "El Mercado de Transporte Aéreo: Lecciones para Chile de una Revisión de la Literatura," ILADES-UAH Working Papers inv163, Universidad Alberto Hurtado/School of Economics and Business.
    15. Brueckner, Jan K. & Pels, Eric, 2005. "European airline mergers, alliance consolidation, and consumer welfare," Journal of Air Transport Management, Elsevier, vol. 11(1), pages 27-41.
    16. Saranga, Haritha & Nagpal, Rajiv, 2016. "Drivers of operational efficiency and its impact on market performance in the Indian Airline industry," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 165-176.
    17. Gaggero, Alberto A. & Luttmann, Alexander, 2023. "The determinants of hidden-city ticketing: Competition, hub-and-spoke networks, and advance-purchase requirements," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    18. Brueckner, Jan K & Whalen, W Tom, 2000. "The Price Effects of International Airline Alliances," Journal of Law and Economics, University of Chicago Press, vol. 43(2), pages 503-545, October.
    19. Bernardo, Valeria & Fageda, Xavier, 2020. "Impacts of competition on connecting travelers: Evidence from the transatlantic aviation market," Transport Policy, Elsevier, vol. 96(C), pages 141-151.
    20. Celik, Erkan & Aydin, Nezir & Gumus, Alev Taskin, 2014. "A multiattribute customer satisfaction evaluation approach for rail transit network: A real case study for Istanbul, Turkey," Transport Policy, Elsevier, vol. 36(C), pages 283-293.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:59:y:2017:i:c:p:83-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.