Advanced Search
MyIDEAS: Login to save this article or follow this journal

A comparison of univariate methods for forecasting electricity demand up to a day ahead

Contents:

Author Info

  • Taylor, James W.
  • de Menezes, Lilian M.
  • McSharry, Patrick E.

Abstract

No abstract is available for this item.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V92-4HM82DH-2/2/72d0a6d4d66f9dbab0daaad8a3d825b2
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal International Journal of Forecasting.

Volume (Year): 22 (2006)
Issue (Month): 1 ()
Pages: 1-16

as in new window
Handle: RePEc:eee:intfor:v:22:y:2006:i:1:p:1-16

Contact details of provider:
Web page: http://www.elsevier.com/locate/ijforecast

Related research

Keywords:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Darbellay, Georges A. & Slama, Marek, 2000. "Forecasting the short-term demand for electricity: Do neural networks stand a better chance?," International Journal of Forecasting, Elsevier, vol. 16(1), pages 71-83.
  2. Ramanathan, Ramu & Engle, Robert & Granger, Clive W. J. & Vahid-Araghi, Farshid & Brace, Casey, 1997. "Shorte-run forecasts of electricity loads and peaks," International Journal of Forecasting, Elsevier, vol. 13(2), pages 161-174, June.
  3. M. Angeles Carnero & Siem Jan Koopman & Marius Ooms, 2003. "Periodic Heteroskedastic RegARFIMA Models for Daily Electricity Spot Prices," Tinbergen Institute Discussion Papers 03-071/4, Tinbergen Institute.
  4. Taylor, James W. & Buizza, Roberto, 2003. "Using weather ensemble predictions in electricity demand forecasting," International Journal of Forecasting, Elsevier, vol. 19(1), pages 57-70.
  5. M. Angeles Carnero & Siem Jan Koopman & Marius Ooms, 2003. "Periodic Heteroskedastic RegARFIMA Models for Daily Electricity Spot Prices," Tinbergen Institute Discussion Papers 03-071/4, Tinbergen Institute.
  6. Souza, Leonardo Rocha & Soares, Lacir Jorge, 2003. "Forecasting Electricity Load Demand: Analysis of the 2001 Rationing Period in Brazil," Economics Working Papers (Ensaios Economicos da EPGE) 491, FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
  7. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Taylor, James W., 2008. "An evaluation of methods for very short-term load forecasting using minute-by-minute British data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 645-658.
  2. Taylor, James W., 2010. "Exponentially weighted methods for forecasting intraday time series with multiple seasonal cycles," International Journal of Forecasting, Elsevier, vol. 26(4), pages 627-646, October.
  3. Soares, Lacir J. & Medeiros, Marcelo C., 2008. "Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 630-644.
  4. Reisen, Valdério A. & Zamprogno, Bartolomeu & Palma, Wilfredo & Arteche, Josu, 2014. "A semiparametric approach to estimate two seasonal fractional parameters in the SARFIMA model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 1-17.
  5. Eran Raviv & Kees E. Bouwman & Dick van Dijk, 2013. "Forecasting Day-Ahead Electricity Prices: Utilizing Hourly Prices," Tinbergen Institute Discussion Papers 13-068/III, Tinbergen Institute.
  6. Taylor, James W., 2006. "Density forecasting for the efficient balancing of the generation and consumption of electricity," International Journal of Forecasting, Elsevier, vol. 22(4), pages 707-724.
  7. Chan, Kam Fong & Gray, Philip & van Campen, Bart, 2008. "A new approach to characterizing and forecasting electricity price volatility," International Journal of Forecasting, Elsevier, vol. 24(4), pages 728-743.
  8. Eran Raviv & Kees E. Bouwman & Dick van Dijk, 2013. "Forecasting Day-Ahead Electricity Prices: Utilizing Hourly Prices," Tinbergen Institute Discussion Papers 13-068/III, Tinbergen Institute.
  9. Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
  10. Rubin, Ofir D. & Babcock, Bruce A., 2011. "A novel approach for modeling deregulated electricity markets," Energy Policy, Elsevier, vol. 39(5), pages 2711-2721, May.
  11. Rotger, G.P. & Franses, Ph.H.B.F., 2006. "Forecasting high-frequency electricity demand with a diffusion index model," Econometric Institute Research Papers EI 2006-38, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  12. Haeran Cho & Yannig Goude & Xavier Brossat & Qiwei Yao, 2013. "Modeling and forecasting daily electricity load curves: a hybrid approach," LSE Research Online Documents on Economics 49634, London School of Economics and Political Science, LSE Library.
  13. Kim, Myung Suk, 2013. "Modeling special-day effects for forecasting intraday electricity demand," European Journal of Operational Research, Elsevier, vol. 230(1), pages 170-180.
  14. Trapero, Juan R. & Pedregal, Diego J., 2009. "Frequency domain methods applied to forecasting electricity markets," Energy Economics, Elsevier, vol. 31(5), pages 727-735, September.
  15. V. Dordonnat & S.J. Koopman & M. Ooms & A. Dessertaine & J. Collet, 2008. "An Hourly Periodic State Space Model for Modelling French National Electricity Load," Tinbergen Institute Discussion Papers 08-008/4, Tinbergen Institute.
  16. Dordonnat, V. & Koopman, S.J. & Ooms, M. & Dessertaine, A. & Collet, J., 2008. "An hourly periodic state space model for modelling French national electricity load," International Journal of Forecasting, Elsevier, vol. 24(4), pages 566-587.
  17. Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
  18. Sergey Voronin & Jarmo Partanen, 2013. "Price Forecasting in the Day-Ahead Energy Market by an Iterative Method with Separate Normal Price and Price Spike Frameworks," Energies, MDPI, Open Access Journal, vol. 6(11), pages 5897-5920, November.
  19. Miloš Božić & Miloš Stojanović & Zoran Stajić & Dragan Tasić, 2013. "A New Two-Stage Approach to Short Term Electrical Load Forecasting," Energies, MDPI, Open Access Journal, vol. 6(4), pages 2130-2148, April.
  20. Jose Ramon Cancelo & Antoni Espasa & Rosemarie Grafe, 2007. "Forecasting from one day to one week ahead for the Spanish system operator," Statistics and Econometrics Working Papers ws078418, Universidad Carlos III, Departamento de Estadística y Econometría.
  21. Eichler Michael & Grothe Oliver & Tuerk Dennis & Manner Hans, 2012. "Modeling spike occurrences in electricity spot prices for forecasting," Research Memorandum 029, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:22:y:2006:i:1:p:1-16. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.