Advanced Search
MyIDEAS: Login to save this article or follow this journal

Clustered panel data models: an efficient approach for nowcasting from poor data

Contents:

Author Info

  • Mouchart, Michel
  • Rombouts, Jeroen V.K.

Abstract

Nowcasting regards the inference on the present realization of random variables, on the basis of information available until a recent past. This paper proposes a modelling strategy aimed at a best use of the data for nowcasting based on panel data with severe deficiencies, namely short times series and many missing data. The basic idea consists of introducing a clustering approach into the usual panel data model specification. A case study in the field of R&D variables illustrates the proposed modelling strategy.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V92-4FNDRWM-1/2/79734af151224dad117a51f46e163065
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal International Journal of Forecasting.

Volume (Year): 21 (2005)
Issue (Month): 3 ()
Pages: 577-594

as in new window
Handle: RePEc:eee:intfor:v:21:y:2005:i:3:p:577-594

Contact details of provider:
Web page: http://www.elsevier.com/locate/ijforecast

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Danilov, D.L. & Magnus, J.R., 2002. "Forecast Accuracy after Pretesting with an Application to the Stock Market," Discussion Paper 2002-76, Tilburg University, Center for Economic Research.
  2. Islam, Towhidul & Fiebig, Denzil G. & Meade, Nigel, 2002. "Modelling multinational telecommunications demand with limited data," International Journal of Forecasting, Elsevier, vol. 18(4), pages 605-624.
  3. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, 06.
  4. Hendry, David F. & Clements, Michael P., 2001. "Economic forecasting: some lessons from recent research," Working Paper Series 0082, European Central Bank.
  5. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
  6. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Badi H. Baltagi, 2007. "Forecasting with Panel Data," Center for Policy Research Working Papers 91, Center for Policy Research, Maxwell School, Syracuse University.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:21:y:2005:i:3:p:577-594. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.