IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v51y2023ics1544612322005347.html
   My bibliography  Save this article

A three-factor stochastic model for forecasting production of energy materials

Author

Listed:
  • Bufalo, Michele
  • Orlando, Giuseppe

Abstract

In this paper, we present a generalized stochastic three-factor model to forecast changes in the industrial production of energy materials. This approach is new as, by deriving a stochastic process correlated with its mean and volatility, we convert it into an uncorrelated auxiliary process through Lamperti transformations. We show that the proposed model can be used for forecasting the change in the equilibrium between demand and supply of energy materials and could be further developed for setting up a reference pricing model for the market.

Suggested Citation

  • Bufalo, Michele & Orlando, Giuseppe, 2023. "A three-factor stochastic model for forecasting production of energy materials," Finance Research Letters, Elsevier, vol. 51(C).
  • Handle: RePEc:eee:finlet:v:51:y:2023:i:c:s1544612322005347
    DOI: 10.1016/j.frl.2022.103356
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612322005347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2022.103356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gonzales Chavez, S & Xiberta Bernat, J & Llaneza Coalla, H, 1999. "Forecasting of energy production and consumption in Asturias (northern Spain)," Energy, Elsevier, vol. 24(3), pages 183-198.
    2. Giuseppe Orlando & Rosa Maria Mininni & Michele Bufalo, 2020. "Forecasting interest rates through Vasicek and CIR models: A partitioning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 569-579, July.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Mohammadi, Hassan & Su, Lixian, 2010. "International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models," Energy Economics, Elsevier, vol. 32(5), pages 1001-1008, September.
    5. Efimova, Olga & Serletis, Apostolos, 2014. "Energy markets volatility modelling using GARCH," Energy Economics, Elsevier, vol. 43(C), pages 264-273.
    6. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo & Fernandez-Anaya, Guillermo, 2008. "Time-varying Hurst exponent for US stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6159-6169.
    7. Thorsten Thadewald & Herbert Buning, 2007. "Jarque-Bera Test and its Competitors for Testing Normality - A Power Comparison," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(1), pages 87-105.
    8. Chen, Lin, 1996. "A bond pricing formula under a non-trivial, three-factor model of interest rates," Economics Letters, Elsevier, vol. 51(1), pages 95-99, April.
    9. Chaboud, Alain & Hjalmarsson, Erik & Zikes, Filip, 2021. "The evolution of price discovery in an electronic market," Journal of Banking & Finance, Elsevier, vol. 130(C).
    10. Sheldon, Tamara L., 2017. "Asymmetric effects of the business cycle on carbon dioxide emissions," Energy Economics, Elsevier, vol. 61(C), pages 289-297.
    11. Giuseppe Orlando & Rosa Maria Mininni & Michele Bufalo, 2019. "Interest rates calibration with a CIR model," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 20(4), pages 370-387, September.
    12. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    13. Meftah Elsaraiti & Adel Merabet, 2021. "A Comparative Analysis of the ARIMA and LSTM Predictive Models and Their Effectiveness for Predicting Wind Speed," Energies, MDPI, vol. 14(20), pages 1-16, October.
    14. Chen, Yu-Lun & Tsai, Wei-Che, 2017. "Determinants of price discovery in the VIX futures market," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 59-73.
    15. Soares, Lacir J. & Medeiros, Marcelo C., 2008. "Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 630-644.
    16. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    17. Lili Wang & Lina Zhan & Rongrong Li, 2019. "Prediction of the Energy Demand Trend in Middle Africa—A Comparison of MGM, MECM, ARIMA and BP Models," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    18. Giuseppe Orlando & Rosa Maria Mininni & Michele Bufalo, 2019. "A new approach to forecast market interest rates through the CIR model," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 37(2), pages 267-292, September.
    19. Giuseppe Orlando & Michele Bufalo, 2021. "Empirical Evidences on the Interconnectedness between Sampling and Asset Returns’ Distributions," Risks, MDPI, vol. 9(5), pages 1-35, May.
    20. Orlando, Giuseppe & Bufalo, Michele, 2022. "Modelling bursts and chaos regularization in credit risk with a deterministic nonlinear model," Finance Research Letters, Elsevier, vol. 47(PA).
    21. Nicola Cufaro Petroni & Piergiacomo Sabino, 2020. "Gamma Related Ornstein-Uhlenbeck Processes and their Simulation," Papers 2003.08810, arXiv.org.
    22. repec:eme:sef000:sef-03-2019-0116 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Orlando & Michele Bufalo, 2021. "Interest rates forecasting: Between Hull and White and the CIR#—How to make a single‐factor model work," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1566-1580, December.
    2. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    3. Marco Di Francesco & Kevin Kamm, 2021. "How to handle negative interest rates in a CIR framework," Papers 2106.03716, arXiv.org.
    4. Giuseppe Orlando & Rosa Maria Mininni & Michele Bufalo, 2020. "Forecasting interest rates through Vasicek and CIR models: A partitioning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 569-579, July.
    5. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    6. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    7. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    8. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
    9. Michele Bianchi & Frank Fabozzi, 2015. "Investigating the Performance of Non-Gaussian Stochastic Intensity Models in the Calibration of Credit Default Swap Spreads," Computational Economics, Springer;Society for Computational Economics, vol. 46(2), pages 243-273, August.
    10. Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
    11. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    12. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
    13. Richter, Anja, 2014. "Explicit solutions to quadratic BSDEs and applications to utility maximization in multivariate affine stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3578-3611.
    14. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    15. Scarcioffolo, Alexandre R. & Etienne, Xiaoli L., 2021. "Regime-switching energy price volatility: The role of economic policy uncertainty," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 336-356.
    16. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Econometric Analysis of Realised Covariation: High Frequency Covariance, Regression and Correlation in Financial Economics," Economics Papers 2002-W13, Economics Group, Nuffield College, University of Oxford, revised 18 Mar 2002.
    17. Mencía, Javier & Sentana, Enrique, 2013. "Valuation of VIX derivatives," Journal of Financial Economics, Elsevier, vol. 108(2), pages 367-391.
    18. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," Center for Financial Institutions Working Papers 02-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
    19. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 1-37.
    20. Akira Yamazaki, 2015. "Asset Pricing With Non-Geometric Type Of Dividends," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 1-38, December.

    More about this item

    Keywords

    Energy; Forecasting; Stochastic trifactorial model; ARIMA-GARCH; Lamperti transformations;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:51:y:2023:i:c:s1544612322005347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.