IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v64y2014icp355-366.html
   My bibliography  Save this article

Energy and exergy utilization efficiencies and emission performance of Canadian transportation sector, 1990–2035

Author

Listed:
  • Motasemi, F.
  • Afzal, Muhammad T.
  • Salema, Arshad Adam
  • Moghavvemi, M.
  • Shekarchian, M.
  • Zarifi, F.
  • Mohsin, R.

Abstract

Transportation sector of Canada is the second largest energy consuming sector which accounts for 30% of the total energy consumption of the country in 2009. The purpose of this work was to analyze the energy, exergy, and emission performance for four different modes of transport (road, air, rail, and marine) from the year 1990–2035. For historical period, the estimated overall energy efficiency ranges from 22.41% (1991) to 22.55% (2006) with a mean of 22.48 ± 0.07% and the overall exergy efficiency ranges from 21.61% (2001) to 21.87 (2006) with a mean of 21.74 ± 0.13%. Energy and exergy efficiencies may reach 20.95% and 20.97% in the year 2035 respectively based on the forecasted data. In comparison with other countries, we found that in the year 2000 the overall energy and exergy efficiencies for Canadian transportation sector were higher than Jordan, China, Norway, and Saudi Arabia but lower than Turkey and Malaysia. Between the year 1990–2009, the highest amount of emission produced in each subsector was: road CO2 (80%), NOx (72%), and CO (carbon monoxide) (96%); air SO2 (86%); rail NOx (6%) and marine NOx (7%). The road subsector produced the highest amount of emissions.

Suggested Citation

  • Motasemi, F. & Afzal, Muhammad T. & Salema, Arshad Adam & Moghavvemi, M. & Shekarchian, M. & Zarifi, F. & Mohsin, R., 2014. "Energy and exergy utilization efficiencies and emission performance of Canadian transportation sector, 1990–2035," Energy, Elsevier, vol. 64(C), pages 355-366.
  • Handle: RePEc:eee:energy:v:64:y:2014:i:c:p:355-366
    DOI: 10.1016/j.energy.2013.09.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213008311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.09.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ediger, Volkan S. & Camdali, Unal, 2007. "Energy and exergy efficiencies in Turkish transportation sector, 1988-2004," Energy Policy, Elsevier, vol. 35(2), pages 1238-1244, February.
    2. Jaber, J.O. & Al-Ghandoor, A. & Sawalha, S.A., 2008. "Energy analysis and exergy utilization in the transportation sector of Jordan," Energy Policy, Elsevier, vol. 36(8), pages 2985-2990, August.
    3. Ji, Xi & Chen, G.Q., 2006. "Exergy analysis of energy utilization in the transportation sector in China," Energy Policy, Elsevier, vol. 34(14), pages 1709-1719, September.
    4. Motasemi, F. & Ani, F.N., 2012. "A review on microwave-assisted production of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4719-4733.
    5. Rosen, M.A., 1992. "Evaluation of energy utilization efficiency in Canada using energy and exergy analyses," Energy, Elsevier, vol. 17(4), pages 339-350.
    6. Ghannadzadeh, Ali & Thery-Hetreux, Raphaële & Baudouin, Olivier & Baudet, Philippe & Floquet, Pascal & Joulia, Xavier, 2012. "General methodology for exergy balance in ProSimPlus® process simulator," Energy, Elsevier, vol. 44(1), pages 38-59.
    7. Gasparatos, Alexandros & El-Haram, Mohamed & Horner, Malcolm, 2009. "A longitudinal analysis of the UK transport sector, 1970-2010," Energy Policy, Elsevier, vol. 37(2), pages 623-632, February.
    8. Saidur, R. & Sattar, M.A. & Masjuki, H.H. & Ahmed, S. & Hashim, U., 2007. "An estimation of the energy and exergy efficiencies for the energy resources consumption in the transportation sector in Malaysia," Energy Policy, Elsevier, vol. 35(8), pages 4018-4026, August.
    9. Pucher, John & Korattyswaropam, Nisha & Mittal, Neha & Ittyerah, Neenu, 2005. "Urban transport crisis in India," Transport Policy, Elsevier, vol. 12(3), pages 185-198, May.
    10. Özdoĝan, Si̇bel & Arikol, Mahi̇r, 1995. "Energy and exergy analyses of selected Turkish industries," Energy, Elsevier, vol. 20(1), pages 73-80.
    11. Yanti, P.A.A. & Mahlia, T.M.I., 2009. "Considerations for the selection of an applicable energy efficiency test procedure for electric motors in Malaysia: Lessons for other developing countries," Energy Policy, Elsevier, vol. 37(9), pages 3467-3474, September.
    12. Zhang, M. & Li, G. & Mu, H.L. & Ning, Y.D., 2011. "Energy and exergy efficiencies in the Chinese transportation sector, 1980–2009," Energy, Elsevier, vol. 36(2), pages 770-776.
    13. Sahraei, Mohammad Hossein & Farhadi, Fatola & Boozarjomehry, Ramin Bozorgmehry, 2013. "Analysis and interaction of exergy, environmental and economic in multi-objective optimization of BTX process based on evolutionary algorithm," Energy, Elsevier, vol. 59(C), pages 147-156.
    14. Bligh, David C. & Ismet Ugursal, V., 2012. "Extended exergy analysis of the economy of Nova Scotia, Canada," Energy, Elsevier, vol. 44(1), pages 878-890.
    15. Wang, Xiaoquan & Morrison, William & Du, Zhenyi & Wan, Yiqin & Lin, Xiangyang & Chen, Paul & Ruan, Roger, 2012. "Biomass temperature profile development and its implications under the microwave-assisted pyrolysis condition," Applied Energy, Elsevier, vol. 99(C), pages 386-392.
    16. Bagdanavicius, Audrius & Jenkins, Nick & Hammond, Geoffrey P., 2012. "Assessment of community energy supply systems using energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 247-255.
    17. Ptasinski, K.J. & Koymans, M.N. & Verspagen, H.H.G., 2006. "Performance of the Dutch Energy Sector based on energy, exergy and Extended Exergy Accounting," Energy, Elsevier, vol. 31(15), pages 3135-3144.
    18. Cervero, Robert & Golub, Aaron, 2007. "Informal transport: A global perspective," Transport Policy, Elsevier, vol. 14(6), pages 445-457, November.
    19. Utlu, Zafer & Hepbasli, Arif, 2006. "Assessment of the energy utilization efficiency in the Turkish transportation sector between 2000 and 2020 using energy and exergy analysis method," Energy Policy, Elsevier, vol. 34(13), pages 1611-1618, September.
    20. Shekarchian, M. & Moghavvemi, M. & Mahlia, T.M.I. & Mazandarani, A., 2011. "A review on the pattern of electricity generation and emission in Malaysia from 1976 to 2008," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2629-2642, August.
    21. Mahlia, T.M.I. & Saidur, R. & Memon, L.A. & Zulkifli, N.W.M. & Masjuki, H.H., 2010. "A review on fuel economy standard for motor vehicles with the implementation possibilities in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3092-3099, December.
    22. Saidur, R. & Masjuki, H.H. & Jamaluddin, M.Y., 2007. "An application of energy and exergy analysis in residential sector of Malaysia," Energy Policy, Elsevier, vol. 35(2), pages 1050-1063, February.
    23. Chen, G.Q. & Chen, B., 2009. "Extended-exergy analysis of the Chinese society," Energy, Elsevier, vol. 34(9), pages 1127-1144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuancheng Lin & Chinhao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Analysis of Changes in the Aggregate Exergy Efficiency of China’s Energy System from 2005 to 2015," Energies, MDPI, vol. 14(8), pages 1-27, April.
    2. Liu, Hongwei & Wu, Jie & Chu, Junfei, 2019. "Environmental efficiency and technological progress of transportation industry-based on large scale data," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 475-482.
    3. Talbi, Besma, 2017. "CO2 emissions reduction in road transport sector in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 232-238.
    4. Jafarmadar, Samad, 2014. "Multidimensional modeling of the effect of EGR (exhaust gas recirculation) mass fraction on exergy terms in an indirect injection diesel engine," Energy, Elsevier, vol. 66(C), pages 305-313.
    5. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
    6. Bühler, Fabian & Nguyen, Tuong-Van & Elmegaard, Brian, 2016. "Energy and exergy analyses of the Danish industry sector," Applied Energy, Elsevier, vol. 184(C), pages 1447-1459.
    7. Sun, Xinyu & Yan, Sen & Liu, Tao & Wang, Jiayin, 2023. "The impact of high-speed rail on urban economy: Synergy with urban agglomeration policy," Transport Policy, Elsevier, vol. 130(C), pages 141-154.
    8. Zhang, Qi & Gu, Baihe & Zhang, Haiying & Ji, Qiang, 2023. "Emission reduction mode of China's provincial transportation sector: Based on “Energy+” carbon efficiency evaluation," Energy Policy, Elsevier, vol. 177(C).
    9. Joshua Allwright & Akhlaqur Rahman & Marcus Coleman & Ambarish Kulkarni, 2022. "Heavy Multi-Articulated Vehicles with Electric and Hybrid Power Trains for Road Freight Activity: An Australian Context," Energies, MDPI, vol. 15(17), pages 1-19, August.
    10. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "The role of an exergy-based building stock model for exploration of future decarbonisation scenarios and policy making," Energy Policy, Elsevier, vol. 105(C), pages 467-483.
    11. Ahmadi, Pouria & Raeesi, Mehrdad & Changizian, Sina & Teimouri, Aidin & Khoshnevisan, Alireza, 2022. "Lifecycle assessment of diesel, diesel-electric and hydrogen fuel cell transit buses with fuel cell degradation and battery aging using machine learning techniques," Energy, Elsevier, vol. 259(C).
    12. Byers, Edward A. & Gasparatos, Alexandros & Serrenho, André C., 2015. "A framework for the exergy analysis of future transport pathways: Application for the United Kingdom transport system 2010–2050," Energy, Elsevier, vol. 88(C), pages 849-862.
    13. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2019. "Application of a Adaptive Neuro-Fuzzy Technique for Projection of the Greenhouse Gas Emissions from Road Transportation," Sustainability, MDPI, vol. 11(22), pages 1-17, November.
    14. Xu, Bin & Lin, Boqiang, 2015. "Carbon dioxide emissions reduction in China's transport sector: A dynamic VAR (vector autoregression) approach," Energy, Elsevier, vol. 83(C), pages 486-495.
    15. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Hai & Dong, Zhiliang & Dong, Shaohui & Sun, Xiaotian & Zhao, Yiran & Li, Yu, 2021. "Extended exergy accounting for smelting and pressing of metals industry in China," Resources Policy, Elsevier, vol. 74(C).
    2. Seckin, C. & Sciubba, E. & Bayulken, A.R., 2012. "An application of the extended exergy accounting method to the Turkish society, year 2006," Energy, Elsevier, vol. 40(1), pages 151-163.
    3. Jaber, J.O. & Al-Ghandoor, A. & Sawalha, S.A., 2008. "Energy analysis and exergy utilization in the transportation sector of Jordan," Energy Policy, Elsevier, vol. 36(8), pages 2985-2990, August.
    4. Zhang, M. & Li, G. & Mu, H.L. & Ning, Y.D., 2011. "Energy and exergy efficiencies in the Chinese transportation sector, 1980–2009," Energy, Elsevier, vol. 36(2), pages 770-776.
    5. Byers, Edward A. & Gasparatos, Alexandros & Serrenho, André C., 2015. "A framework for the exergy analysis of future transport pathways: Application for the United Kingdom transport system 2010–2050," Energy, Elsevier, vol. 88(C), pages 849-862.
    6. Al-Ghandoor, A. & Phelan, P.E. & Villalobos, R. & Jaber, J.O., 2010. "Energy and exergy utilizations of the U.S. manufacturing sector," Energy, Elsevier, vol. 35(7), pages 3048-3065.
    7. An, Qier & An, Haizhong & Wang, Lang & Huang, Xuan, 2014. "Structural and regional variations of natural resource production in China based on exergy," Energy, Elsevier, vol. 74(C), pages 67-77.
    8. Meng, Fanxin & Liu, Gengyuan & Yang, Zhifeng & Casazza, Marco & Cui, Shenghui & Ulgiati, Sergio, 2017. "Energy efficiency of urban transportation system in Xiamen, China. An integrated approach," Applied Energy, Elsevier, vol. 186(P2), pages 234-248.
    9. Wang, Y.F. & Li, K.P. & Xu, X.M. & Zhang, Y.R., 2014. "Transport energy consumption and saving in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 641-655.
    10. Utlu, Zafer & Hepbasli, Arif, 2008. "Energetic and exergetic assessment of the industrial sector at varying dead (reference) state temperatures: A review with an illustrative example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1277-1301, June.
    11. Gasparatos, Alexandros & El-Haram, Mohamed & Horner, Malcolm, 2009. "A longitudinal analysis of the UK transport sector, 1970-2010," Energy Policy, Elsevier, vol. 37(2), pages 623-632, February.
    12. Liu, Hongwei & Yang, Ronglu & Wu, Jie & Chu, Junfei, 2021. "Total-factor energy efficiency change of the road transportation industry in China: A stochastic frontier approach," Energy, Elsevier, vol. 219(C).
    13. Dai, Jing & Chen, Bin & Sciubba, Enrico, 2014. "Extended exergy based ecological accounting for the transportation sector in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 229-237.
    14. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    15. Seckin, Candeniz & Bayulken, Ahmet R., 2013. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment – Determination of environmental remediation cost for municipal wastewater," Applied Energy, Elsevier, vol. 110(C), pages 55-64.
    16. Christopher J. Koroneos & Evanthia A. Nanaki & George A. Xydis, 2012. "Sustainability Indicators for the Use of Resources—The Exergy Approach," Sustainability, MDPI, vol. 4(8), pages 1-12, August.
    17. Zhang, Bo & Chen, G.Q., 2010. "Physical sustainability assessment for the China society: Exergy-based systems account for resources use and environmental emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1527-1545, August.
    18. BoroumandJazi, G. & Rismanchi, B. & Saidur, R., 2013. "A review on exergy analysis of industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 198-203.
    19. Mahlia, T.M.I. & Tohno, S. & Tezuka, T., 2012. "History and current status of the motor vehicle energy labeling and its implementation possibilities in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1828-1844.
    20. Li, Sheng & Jin, Hongguang & Gao, Lin & Zhang, Xiaosong, 2014. "Exergy analysis and the energy saving mechanism for coal to synthetic/substitute natural gas and power cogeneration system without and with CO2 capture," Applied Energy, Elsevier, vol. 130(C), pages 552-561.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:64:y:2014:i:c:p:355-366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.