IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v55y2013icp1084-1093.html
   My bibliography  Save this article

Energy consumption for crop irrigation in a semiarid climate (south-eastern Spain)

Author

Listed:
  • Soto-García, M.
  • Martin-Gorriz, B.
  • García-Bastida, P.A.
  • Alcon, F.
  • Martínez-Alvarez, V.

Abstract

This paper analyses the water-energy nexus in irrigation districts (IDs) under the semi-arid conditions of south-eastern Spain. Three IDs supplied by different water sources and subjected to water scarcity over time were studied throughout a 10-year period (2002–2011). A set of performance indicators was selected to characterise water and energy relationships at three management levels: basin, irrigation district, and farm. Basin level was the largest energy consumer, representing 71–82% of the annual total consumption, which ranged from 0.95 to 1.55 kWh m−3. Basin energy consumption increased depending on the water source as follows: surface water, recycled water, groundwater, external water transfer, and desalinated brackish water. ID level involved 12–15% of the annual total consumption. The highest values were attained in periods of water scarcity, when the available sources were those with higher energy requirements. ID modernisation resulted in slight decreases in energy consumption at that level. At farm level, energy consumption was lacking when farmers took advantage of the pressure head in the ID distribution network, whereas it was from 0 to 0.19 kWh m−3 when the available pressure head was lost. Finally, water and energy productivities by the main crops were analysed.

Suggested Citation

  • Soto-García, M. & Martin-Gorriz, B. & García-Bastida, P.A. & Alcon, F. & Martínez-Alvarez, V., 2013. "Energy consumption for crop irrigation in a semiarid climate (south-eastern Spain)," Energy, Elsevier, vol. 55(C), pages 1084-1093.
  • Handle: RePEc:eee:energy:v:55:y:2013:i:c:p:1084-1093
    DOI: 10.1016/j.energy.2013.03.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213002223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.03.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jackson, Tamara M. & Khan, Shahbaz & Hafeez, Mohsin, 2010. "A comparative analysis of water application and energy consumption at the irrigated field level," Agricultural Water Management, Elsevier, vol. 97(10), pages 1477-1485, October.
    2. David Martínez-Granados & José Maestre-Valero & Javier Calatrava & Victoriano Martínez-Alvarez, 2011. "The Economic Impact of Water Evaporation Losses from Water Reservoirs in the Segura Basin, SE Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3153-3175, October.
    3. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza, 2012. "Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran," Energy, Elsevier, vol. 44(1), pages 211-216.
    4. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    5. Siddiqi, Afreen & Anadon, Laura Diaz, 2011. "The water-energy nexus in Middle East and North Africa," Energy Policy, Elsevier, vol. 39(8), pages 4529-4540, August.
    6. Khan, S. & Khan, M.A. & Hanjra, M.A. & Mu, J., 2009. "Pathways to reduce the environmental footprints of water and energy inputs in food production," Food Policy, Elsevier, vol. 34(2), pages 141-149, April.
    7. Topak, Ramazan & Süheri, Sinan & Acar, Bilal, 2010. "Comparison of energy of irrigation regimes in sugar beet production in a semi-arid region," Energy, Elsevier, vol. 35(12), pages 5464-5471.
    8. Rafiee, Shahin & Mousavi Avval, Seyed Hashem & Mohammadi, Ali, 2010. "Modeling and sensitivity analysis of energy inputs for apple production in Iran," Energy, Elsevier, vol. 35(8), pages 3301-3306.
    9. Salvador, R. & Martínez-Cob, A. & Cavero, J. & Playán, E., 2011. "Seasonal on-farm irrigation performance in the Ebro basin (Spain): Crops and irrigation systems," Agricultural Water Management, Elsevier, vol. 98(4), pages 577-587, February.
    10. Renault, D. & Wallender, W. W., 2000. "Nutritional water productivity and diets," Agricultural Water Management, Elsevier, vol. 45(3), pages 275-296, August.
    11. Martínez Alvarez, V. & Leyva, J. Calatrava & Maestre Valero, J.F. & Górriz, B. Martín, 2009. "Economic assessment of shade-cloth covers for agricultural irrigation reservoirs in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 96(9), pages 1351-1359, September.
    12. Kahlown, Muhammad Akram & Raoof, Abdur & Zubair, Muhammad & Kemper, W. Doral, 2007. "Water use efficiency and economic feasibility of growing rice and wheat with sprinkler irrigation in the Indus Basin of Pakistan," Agricultural Water Management, Elsevier, vol. 87(3), pages 292-298, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Firat Arslan & Juan Ignacio Córcoles Tendero & Juan Antonio Rodríguez Díaz & Demetrio Antonio Zema, 2023. "Comparison of Irrigation Management in Water User Associations of Italy, Spain and Turkey Using Benchmarking Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 55-74, January.
    2. Martin-Gorriz, B. & Soto-García, M. & Martínez-Alvarez, V., 2014. "Energy and greenhouse-gas emissions in irrigated agriculture of SE (southeast) Spain. Effects of alternative water supply scenarios," Energy, Elsevier, vol. 77(C), pages 478-488.
    3. Heider, Katharina & Quaranta, Emanuele & García Avilés, José María & Rodriguez Lopez, Juan Miguel & Balbo, Andrea L. & Scheffran, Jürgen, 2022. "Reinventing the wheel – The preservation and potential of traditional water wheels in the terraced irrigated landscapes of the Ricote Valley, southeast Spain," Agricultural Water Management, Elsevier, vol. 259(C).
    4. Martínez-Alvarez, V. & García-Bastida, P.A. & Martin-Gorriz, B. & Soto-García, M., 2014. "Adaptive strategies of on-farm water management under water supply constraints in south-eastern Spain," Agricultural Water Management, Elsevier, vol. 136(C), pages 59-67.
    5. Maestre-Valero, J.F. & Martin-Gorriz, B. & Alarcón, J.J. & Nicolas, E. & Martinez-Alvarez, V., 2016. "Economic feasibility of implementing regulated deficit irrigation with reclaimed water in a grapefruit orchard," Agricultural Water Management, Elsevier, vol. 178(C), pages 119-125.
    6. Redón Santafé, Miguel & Torregrosa Soler, Juan Bautista & Sánchez Romero, Francisco Javier & Ferrer Gisbert, Pablo S. & Ferrán Gozálvez, José Javier & Ferrer Gisbert, Carlos M., 2014. "Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs," Energy, Elsevier, vol. 67(C), pages 246-255.
    7. Sandra Ricart & Rubén A. Villar-Navascués & Maria Hernández-Hernández & Antonio M. Rico-Amorós & Jorge Olcina-Cantos & Enrique Moltó-Mantero, 2021. "Extending Natural Limits to Address Water Scarcity? The Role of Non-Conventional Water Fluxes in Climate Change Adaptation Capacity: A Review," Sustainability, MDPI, vol. 13(5), pages 1-31, February.
    8. Espinosa-Tasón, Jaime & Berbel, Julio & Gutiérrez-Martín, Carlos, 2020. "Energized water: Evolution of water-energy nexus in the Spanish irrigated agriculture, 1950–2017," Agricultural Water Management, Elsevier, vol. 233(C).
    9. Stergios Emmanouil & Jason Philhower & Sophie Macdonald & Fahad Khan Khadim & Meijian Yang & Ezana Atsbeha & Himaja Nagireddy & Natalie Roach & Elizabeth Holzer & Emmanouil N. Anagnostou, 2021. "A Comprehensive Approach to the Design of a Renewable Energy Microgrid for Rural Ethiopia: The Technical and Social Perspectives," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    10. Somayeh Rezaei Kalvani & Fulvio Celico, 2023. "The Water–Energy–Food Nexus in European Countries: A Review and Future Perspectives," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    11. Martínez-Alvarez, V. & Gallego-Elvira, B. & Maestre-Valero, J.F. & Martin-Gorriz, B. & Soto-Garcia, M., 2020. "Assessing concerns about fertigation costs with desalinated seawater in south-eastern Spain," Agricultural Water Management, Elsevier, vol. 239(C).
    12. Miguel Ángel Pardo Picazo & Juan Manzano Juárez & Diego García-Márquez, 2018. "Energy Consumption Optimization in Irrigation Networks Supplied by a Standalone Direct Pumping Photovoltaic System," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    13. Alcon, Francisco & de-Miguel, María Dolores & Martínez-Paz, José Miguel, 2021. "Assessment of real and perceived cost-effectiveness to inform agricultural diffuse pollution mitigation policies," Land Use Policy, Elsevier, vol. 107(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Redón Santafé, Miguel & Torregrosa Soler, Juan Bautista & Sánchez Romero, Francisco Javier & Ferrer Gisbert, Pablo S. & Ferrán Gozálvez, José Javier & Ferrer Gisbert, Carlos M., 2014. "Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs," Energy, Elsevier, vol. 67(C), pages 246-255.
    2. Soto-García, M. & Martínez-Alvarez, V. & García-Bastida, P.A. & Alcon, F. & Martin-Gorriz, B., 2013. "Effect of water scarcity and modernisation on the performance of irrigation districts in south-eastern Spain," Agricultural Water Management, Elsevier, vol. 124(C), pages 11-19.
    3. Khan, Zarrar & Linares, Pedro & García-González, Javier, 2017. "Integrating water and energy models for policy driven applications. A review of contemporary work and recommendations for future developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1123-1138.
    4. Martin-Gorriz, B. & Soto-García, M. & Martínez-Alvarez, V., 2014. "Energy and greenhouse-gas emissions in irrigated agriculture of SE (southeast) Spain. Effects of alternative water supply scenarios," Energy, Elsevier, vol. 77(C), pages 478-488.
    5. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    6. El Bilali, Ali & Taghi, Youssef & Briouel, Omar & Taleb, Abdeslam & Brouziyne, Youssef, 2022. "A framework based on high-resolution imagery datasets and MCS for forecasting evaporation loss from small reservoirs in groundwater-based agriculture," Agricultural Water Management, Elsevier, vol. 262(C).
    7. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Jafari, Ali & Mohammadi, Ali, 2011. "Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach," Energy, Elsevier, vol. 36(5), pages 2765-2772.
    8. Yongqiang Zhang & Hao Sun & Maosheng Ge & Hang Zhao & Yifan Hu & Changyue Cui & Zhibin Wu, 2023. "Difference in Energy Input and Output in Agricultural Production under Surface Irrigation and Water-Saving Irrigation: A Case Study of Kiwi Fruit in Shaanxi," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    9. Zhang, Xiaohong & Qi, Yan & Wang, Yanqing & Wu, Jun & Lin, Lili & Peng, Hong & Qi, Hui & Yu, Xiaoyu & Zhang, Yanzong, 2016. "Effect of the tap water supply system on China's economy and energy consumption, and its emissions’ impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 660-671.
    10. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    11. Gómez, Antonio & Dopazo, César & Fueyo, Norberto, 2014. "The causes of the high energy intensity of the Kazakh economy: A characterization of its energy system," Energy, Elsevier, vol. 71(C), pages 556-568.
    12. Pishgar-Komleh, Seyyed Hassan & Omid, Mahmoud & Heidari, Mohammad Davoud, 2013. "On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province," Energy, Elsevier, vol. 59(C), pages 63-71.
    13. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Jafari, Ali & Mohammadi, Ali, 2011. "Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach," Applied Energy, Elsevier, vol. 88(11), pages 3765-3772.
    14. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza & Heidari, Mohammad Davoud, 2013. "Energy use pattern and sensitivity analysis of energy inputs and input costs for pear production in Iran," Renewable Energy, Elsevier, vol. 51(C), pages 7-12.
    15. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2015. "Exploring the water-energy nexus in Brazil: The electricity use for water supply," Energy, Elsevier, vol. 85(C), pages 415-432.
    16. Kosemani, Babajide S. & Bamgboye, A. Isaac, 2020. "Energy input-output analysis of rice production in Nigeria," Energy, Elsevier, vol. 207(C).
    17. Soltanali, Hamzeh & Nikkhah, Amin & Rohani, Abbas, 2017. "Energy audit of Iranian kiwifruit production using intelligent systems," Energy, Elsevier, vol. 139(C), pages 646-654.
    18. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein & Rajaeifar, Mohammad Ali, 2014. "Application of artificial neural networks for prediction of output energy and GHG emissions in potato production in Iran," Agricultural Systems, Elsevier, vol. 123(C), pages 120-127.
    19. Lee, Mengshan & Keller, Arturo A. & Chiang, Pen-Chi & Den, Walter & Wang, Hongtao & Hou, Chia-Hung & Wu, Jiang & Wang, Xin & Yan, Jinyue, 2017. "Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks," Applied Energy, Elsevier, vol. 205(C), pages 589-601.
    20. Mounir, Adil & Mascaro, Giuseppe & White, Dave D., 2019. "A metropolitan scale analysis of the impacts of future electricity mix alternatives on the water-energy nexus," Applied Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:55:y:2013:i:c:p:1084-1093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.