IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i12p5464-5471.html
   My bibliography  Save this article

Comparison of energy of irrigation regimes in sugar beet production in a semi-arid region

Author

Listed:
  • Topak, Ramazan
  • Süheri, Sinan
  • Acar, Bilal

Abstract

This study analyzed the effect of three levels of drip irrigation in sugar beet (Beta vulgaris L.) production in the Middle Anatolian region of Turkey. Two deficit irrigation treatments 75% and 50% of measured soil water depletion were compared with a full irrigation control treatment. In this paper, root yield, NEY (net energy yield), EEP (efficiency of energy production) and EWUE (energy water use efficiency) were investigated. Energy consumption of irrigation was found to be about 60% of total energy input in sugar beet production under full and deficit irrigation treatments. It was found that sugar beet had the highest EEP value (6.29) under the partial deficit irrigation (representing 75% of full irrigation). However, it was observed that full and severe deficit irrigation (representing 50% of full irrigation) treatments had a lower value. Results of this study indicated that the partial deficit drip irrigation technique can be applied in sugar beet production. In practice, deficit irrigation technique can reduce irrigation water use up to 25% compared to full irrigation technique. In addition, partial deficit drip irrigation technique may save 11.2% of total energy inputs, 16.1% of irrigation energy inputs, 21.2% of total fuel use and 25% of fuel use in irrigation.

Suggested Citation

  • Topak, Ramazan & Süheri, Sinan & Acar, Bilal, 2010. "Comparison of energy of irrigation regimes in sugar beet production in a semi-arid region," Energy, Elsevier, vol. 35(12), pages 5464-5471.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:12:p:5464-5471
    DOI: 10.1016/j.energy.2010.06.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210003415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.06.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    2. Mohamed Mrini & Faouzi Senhaji & David Pimentel, 2001. "Energy Analysis of Sugarcane Production in Morocco," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 3(2), pages 109-126, June.
    3. Fabeiro, C. & Martin de Santa Olalla, F. & Lopez, R. & Dominguez, A., 2003. "Production and quality of the sugar beet (Beta vulgaris L.) cultivated under controlled deficit irrigation conditions in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 62(3), pages 215-227, October.
    4. Pervanchon, F. & Bockstaller, C. & Girardin, P., 2002. "Assessment of energy use in arable farming systems by means of an agro-ecological indicator: the energy indicator," Agricultural Systems, Elsevier, vol. 72(2), pages 149-172, May.
    5. Uhlin, Hans-Erik, 1998. "Why energy productivity is increasing: An I-O analysis of Swedish agriculture," Agricultural Systems, Elsevier, vol. 56(4), pages 443-465, April.
    6. Erdal, Gülistan & Esengün, Kemal & Erdal, Hilmi & Gündüz, Orhan, 2007. "Energy use and economical analysis of sugar beet production in Tokat province of Turkey," Energy, Elsevier, vol. 32(1), pages 35-41.
    7. Guzmán, Gloria I. & Alonso, Antonio M., 2008. "A comparison of energy use in conventional and organic olive oil production in Spain," Agricultural Systems, Elsevier, vol. 98(3), pages 167-176, October.
    8. Tognetti, R. & Palladino, M. & Minnocci, A. & Delfine, S. & Alvino, A., 2003. "The response of sugar beet to drip and low-pressure sprinkler irrigation in southern Italy," Agricultural Water Management, Elsevier, vol. 60(2), pages 135-155, May.
    9. Tzilivakis, J. & Warner, D.J. & May, M. & Lewis, K.A. & Jaggard, K., 2005. "An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK," Agricultural Systems, Elsevier, vol. 85(2), pages 101-119, August.
    10. Yilmaz, Ibrahim & Akcaoz, Handan & Ozkan, Burhan, 2005. "An analysis of energy use and input costs for cotton production in Turkey," Renewable Energy, Elsevier, vol. 30(2), pages 145-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gómez, Antonio & Dopazo, César & Fueyo, Norberto, 2014. "The causes of the high energy intensity of the Kazakh economy: A characterization of its energy system," Energy, Elsevier, vol. 71(C), pages 556-568.
    2. Šarauskis, Egidijus & Romaneckas, Kęstutis & Jasinskas, Algirdas & Kimbirauskienė, Rasa & Naujokienė, Vilma, 2020. "Improving energy efficiency and environmental mitigation through tillage management in faba bean production," Energy, Elsevier, vol. 209(C).
    3. Khanali, Majid & Ghasemi-Mobtaker, Hassan & Varmazyar, Hossein & Mohammadkashi, Naghmeh & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2022. "Applying novel eco-exergoenvironmental toxicity index to select the best irrigation system of sunflower production," Energy, Elsevier, vol. 250(C).
    4. Soto-García, M. & Martin-Gorriz, B. & García-Bastida, P.A. & Alcon, F. & Martínez-Alvarez, V., 2013. "Energy consumption for crop irrigation in a semiarid climate (south-eastern Spain)," Energy, Elsevier, vol. 55(C), pages 1084-1093.
    5. Redón Santafé, Miguel & Torregrosa Soler, Juan Bautista & Sánchez Romero, Francisco Javier & Ferrer Gisbert, Pablo S. & Ferrán Gozálvez, José Javier & Ferrer Gisbert, Carlos M., 2014. "Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs," Energy, Elsevier, vol. 67(C), pages 246-255.
    6. Yavuz, Duran & Seymen, Musa & Yavuz, Nurcan & Çoklar, Hacer & Ercan, Muhammet, 2021. "Effects of water stress applied at various phenological stages on yield, quality, and water use efficiency of melon," Agricultural Water Management, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zangeneh, Morteza & Omid, Mahmoud & Akram, Asadollah, 2010. "A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran," Energy, Elsevier, vol. 35(7), pages 2927-2933.
    2. Torki-Harchegani, Mehdi & Ebrahimi, Rahim & Mahmoodi-Eshkaftaki, Mahmood, 2015. "Almond production in Iran: An analysis of energy use efficiency (2008–2011)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 217-224.
    3. Pishgar Komleh, S.H. & Keyhani, A. & Rafiee, Sh. & Sefeedpary, P., 2011. "Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran," Energy, Elsevier, vol. 36(5), pages 3335-3341.
    4. Stanisław Bielski & Renata Marks-Bielska & Paweł Wiśniewski, 2022. "Investigation of Energy and Economic Balance and GHG Emissions in the Production of Different Cultivars of Buckwheat ( Fagopyrum esculentum Moench): A Case Study in Northeastern Poland," Energies, MDPI, vol. 16(1), pages 1-24, December.
    5. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    6. Pishgar-Komleh, Seyyed Hassan & Keyhani, Alireza & Mostofi-Sarkari, Mohammad Reza & Jafari, Ali, 2012. "Energy and economic analysis of different seed corn harvesting systems in Iran," Energy, Elsevier, vol. 43(1), pages 469-476.
    7. Burak Saltuk & Barbara Jagosz & Osman Gökdoğan & Roman Rolbiecki & Atılgan Atilgan & Stanisław Rolbiecki, 2022. "An Investigation on the Energy Balance and Greenhouse Gas Emissions of Orange Production in Turkey," Energies, MDPI, vol. 15(22), pages 1-14, November.
    8. Alhajj Ali, Salem & Tedone, Luigi & De Mastro, Giuseppe, 2013. "A comparison of the energy consumption of rainfed durum wheat under different management scenarios in southern Italy," Energy, Elsevier, vol. 61(C), pages 308-318.
    9. Radmehr, Riza & Ghorbani, Mohammad & Ziaei, Ali Naghi, 2021. "Quantifying and managing the water-energy-food nexus in dry regions food insecurity: New methods and evidence," Agricultural Water Management, Elsevier, vol. 245(C).
    10. Pishgar-Komleh, S.H. & Sefeedpari, P. & Rafiee, S., 2011. "Energy and economic analysis of rice production under different farm levels in Guilan province of Iran," Energy, Elsevier, vol. 36(10), pages 5824-5831.
    11. Li, Yangyang & Liu, Ningning & Fan, Hua & Su, Jixia & Fei, Cong & Wang, Kaiyong & Ma, Fuyu & Kisekka, Isaya, 2019. "Effects of deficit irrigation on photosynthesis, photosynthate allocation, and water use efficiency of sugar beet," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    12. Rajaeifar, Mohammad Ali & Akram, Asadolah & Ghobadian, Barat & Rafiee, Shahin & Heijungs, Reinout & Tabatabaei, Meisam, 2016. "Environmental impact assessment of olive pomace oil biodiesel production and consumption: A comparative lifecycle assessment," Energy, Elsevier, vol. 106(C), pages 87-102.
    13. Nassi o Di Nasso, N. & Bosco, S. & Di Bene, C. & Coli, A. & Mazzoncini, M. & Bonari, E., 2011. "Energy efficiency in long-term Mediterranean cropping systems with different management intensities," Energy, Elsevier, vol. 36(4), pages 1924-1930.
    14. Yuan, Shen & Peng, Shaobing, 2017. "Trends in the economic return on energy use and energy use efficiency in China's crop production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 836-844.
    15. Jekayinfa, S.O. & Adebayo, A.O. & Afolayan, S.O. & Daramola, E., 2013. "On-farm energetics of mango production in Nigeria," Renewable Energy, Elsevier, vol. 51(C), pages 60-63.
    16. Pahlavan, Reza & Omid, Mahmoud & Akram, Asadollah, 2011. "Energy use efficiency in greenhouse tomato production in Iran," Energy, Elsevier, vol. 36(12), pages 6714-6719.
    17. Ghatrehsamani, Shirin & Ebrahimi, Rahim & Kazi, Salim Newaz & Badarudin Badry, Ahmad & Sadeghinezhad, Emad, 2016. "Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran," Energy, Elsevier, vol. 99(C), pages 315-321.
    18. Kaur, Navneet & Vashist, Krishan Kumar & Brar, A.S., 2021. "Energy and productivity analysis of maize based crop sequences compared to rice-wheat system under different moisture regimes," Energy, Elsevier, vol. 216(C).
    19. Jéssica Bárbara da Silva & Edvaldo Pereira Santos Júnior & João Gabriel Távora Pedrosa & Aldo Torres Sales & Everardo Valadares de Sa Barretto Sampaio & Rômulo Simões Cezar Menezes & Emmanuel Damilano, 2022. "Energetic and Economic Analysis of Spineless Cactus Biomass Production in the Brazilian Semi-arid Region," Energies, MDPI, vol. 15(14), pages 1-16, July.
    20. Ozkan, Burhan & Ceylan, R. Figen & Kizilay, Hatice, 2011. "Comparison of energy inputs in glasshouse double crop (fall and summer crops) tomato production," Renewable Energy, Elsevier, vol. 36(5), pages 1639-1644.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:12:p:5464-5471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.