IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v28y2003i15p1545-1555.html
   My bibliography  Save this article

Experiences in mid-term planning of district heating systems

Author

Listed:
  • Dotzauer, Erik

Abstract

District heating systems often consist of two types of units: those that only produce heat, and those that produce both heat and power, called combined heat and power units. In order to improve the operation of such systems, detailed and reliable optimization models and methods must be available. The present paper considers mid-term planning, i.e. planning of the production of heat and power for periods of up to one month. Problem features and the questions relevant on the mid-term horizon are discussed. These include the operation of fuel storage and the influence of the national tax system. A mixed integer programming model of a set of district heating systems in Sweden is developed. The major goal is to minimize the operation cost, subject to the condition of fulfilling heat demands. The main output results are the power produced and consumed each day of the planning horizon. This is important information for the hedging activities performed in the financial power market. The model has been used regularly to support an energy company with production plans. Computational results are presented.

Suggested Citation

  • Dotzauer, Erik, 2003. "Experiences in mid-term planning of district heating systems," Energy, Elsevier, vol. 28(15), pages 1545-1555.
  • Handle: RePEc:eee:energy:v:28:y:2003:i:15:p:1545-1555
    DOI: 10.1016/S0360-5442(03)00151-8
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544203001518
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(03)00151-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John A. Muckstadt & Sherri A. Koenig, 1977. "An Application of Lagrangian Relaxation to Scheduling in Power-Generation Systems," Operations Research, INFORMS, vol. 25(3), pages 387-403, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lozano, Miguel A. & Ramos, Jose C. & Serra, Luis M., 2010. "Cost optimization of the design of CHCP (combined heat, cooling and power) systems under legal constraints," Energy, Elsevier, vol. 35(2), pages 794-805.
    2. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    3. Alkasmoul, Fahad & Asaker, Mohammed & Widuch, Aleksander & Malicki, Marcin & Zwierzchowski, Ryszard & Wołowicz, Marcin, 2023. "Multigeneration source based on novel triple-component chiller configuration co-supplied with renewable and fossil energy operated in Arabic Peninsula conditions," Energy, Elsevier, vol. 263(PC).
    4. Djuric Ilic, Danica & Dotzauer, Erik & Trygg, Louise, 2012. "District heating and ethanol production through polygeneration in Stockholm," Applied Energy, Elsevier, vol. 91(1), pages 214-221.
    5. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Evaluation of the cost of using power plant reject heat in low-temperature district heating and cooling networks," Applied Energy, Elsevier, vol. 162(C), pages 892-907.
    6. Jae-Ki Byun & Young-Don Choi & Jong-Keun Shin & Myung-Ho Park & Dong-Kurl Kwak, 2012. "Study on the Development of an Optimal Heat Supply Control Algorithm for Group Energy Apartment Buildings According to the Variation of Outdoor Air Temperature," Energies, MDPI, vol. 5(5), pages 1-19, May.
    7. Théry Hétreux, Raphaële & Hétreux, Gilles & Floquet, Pascal & Leclercq, Alexandre, 2021. "The energy Extended Resource Task Network, a general formalism for the modeling of production systems:Application to waste heat valorization," Energy, Elsevier, vol. 214(C).
    8. Brkić, Dejan & Tanasković, Toma I., 2008. "Systematic approach to natural gas usage for domestic heating in urban areas," Energy, Elsevier, vol. 33(12), pages 1738-1753.
    9. Jalilinasrabady, Saeid & Palsson, Halldor & Saevarsdottir, Gudrun & Itoi, Ryuichi & Valdimarsson, Pall, 2013. "Experimental and CFD simulation of heat efficiency improvement in geothermal spas," Energy, Elsevier, vol. 56(C), pages 124-134.
    10. Piotr Pałka & Marcin Malec & Przemysław Kaszyński & Jacek Kamiński & Piotr Saługa, 2023. "District Heating System Optimisation: A Three-Phase Thermo-Hydraulic Linear Model," Energies, MDPI, vol. 16(8), pages 1-18, April.
    11. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    12. Chinese, Damiana & Meneghetti, Antonella, 2005. "Optimisation models for decision support in the development of biomass-based industrial district-heating networks in Italy," Applied Energy, Elsevier, vol. 82(3), pages 228-254, November.
    13. Rong, Aiying & Lahdelma, Risto & Luh, Peter B., 2008. "Lagrangian relaxation based algorithm for trigeneration planning with storages," European Journal of Operational Research, Elsevier, vol. 188(1), pages 240-257, July.
    14. Henning, Dag & Amiri, Shahnaz & Holmgren, Kristina, 2006. "Modelling and optimisation of electricity, steam and district heating production for a local Swedish utility," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1224-1247, December.
    15. Blarke, Morten B. & Dotzauer, Erik, 2011. "Intermittency-friendly and high-efficiency cogeneration: Operational optimisation of cogeneration with compression heat pump, flue gas heat recovery, and intermediate cold storage," Energy, Elsevier, vol. 36(12), pages 6867-6878.
    16. Åberg, M. & Widén, J. & Henning, D., 2012. "Sensitivity of district heating system operation to heat demand reductions and electricity price variations: A Swedish example," Energy, Elsevier, vol. 41(1), pages 525-540.
    17. Torchio, Marco F. & Genon, Giuseppe & Poggio, Alberto & Poggio, Marco, 2009. "Merging of energy and environmental analyses for district heating systems," Energy, Elsevier, vol. 34(3), pages 220-227.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Payal Mitra & Soumendu Sarkar & Tarun Mehta & Atul Kumar, 2022. "Unit Commitment in a Federalized Power Market: A Mixed Integer Programming Approach," Working papers 323, Centre for Development Economics, Delhi School of Economics.
    2. Dong, Jizhe & Li, Yuanhan & Zuo, Shi & Wu, Xiaomei & Zhang, Zuyao & Du, Jiang, 2023. "An intraperiod arbitrary ramping-rate changing model in unit commitment," Energy, Elsevier, vol. 284(C).
    3. Ramteen Sioshansi and Ashlin Tignor, 2012. "Do Centrally Committed Electricity Markets Provide Useful Price Signals?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    4. Johnson, Raymond B. & Oren, Shmuel S. & Svoboda, Alva J., 1997. "Equity and efficiency of unit commitment in competitive electricity markets," Utilities Policy, Elsevier, vol. 6(1), pages 9-19, March.
    5. L. A. C. Roque & D. B. M. M. Fontes & F. A. C. C. Fontes, 2014. "A hybrid biased random key genetic algorithm approach for the unit commitment problem," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 140-166, July.
    6. Heejung Park, 2022. "A Unit Commitment Model Considering Feasibility of Operating Reserves under Stochastic Optimization Framework," Energies, MDPI, vol. 15(17), pages 1-22, August.
    7. Maturana, Jorge & Riff, Maria-Cristina, 2007. "Solving the short-term electrical generation scheduling problem by an adaptive evolutionary approach," European Journal of Operational Research, Elsevier, vol. 179(3), pages 677-691, June.
    8. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    9. Steeger, Gregory & Rebennack, Steffen, 2017. "Dynamic convexification within nested Benders decomposition using Lagrangian relaxation: An application to the strategic bidding problem," European Journal of Operational Research, Elsevier, vol. 257(2), pages 669-686.
    10. Feng, Chenjia & Shao, Chengcheng & Wang, Xifan, 2021. "CSP clustering in unit commitment for power system production cost modeling," Renewable Energy, Elsevier, vol. 168(C), pages 1217-1228.
    11. C. L. Tseng & C. A. Li & S. S. Oren, 2000. "Solving the Unit Commitment Problem by a Unit Decommitment Method," Journal of Optimization Theory and Applications, Springer, vol. 105(3), pages 707-730, June.
    12. Kaleta, Mariusz & Toczylowski, Eugeniusz, 2008. "Restriction techniques for the unit-commitment problem with total procurement costs," Energy Policy, Elsevier, vol. 36(7), pages 2439-2448, July.
    13. Samer Takriti & Benedikt Krasenbrink & Lilian S.-Y. Wu, 2000. "Incorporating Fuel Constraints and Electricity Spot Prices into the Stochastic Unit Commitment Problem," Operations Research, INFORMS, vol. 48(2), pages 268-280, April.
    14. Claude Lemaréchal, 2007. "The omnipresence of Lagrange," Annals of Operations Research, Springer, vol. 153(1), pages 9-27, September.
    15. Yau, Sheena & Kwon, Roy H. & Scott Rogers, J. & Wu, Desheng, 2011. "Financial and operational decisions in the electricity sector: Contract portfolio optimization with the conditional value-at-risk criterion," International Journal of Production Economics, Elsevier, vol. 134(1), pages 67-77, November.
    16. Briest, Gordon & Lauven, Lars-Peter & Kupfer, Stefan & Lukas, Elmar, 2022. "Leaving well-worn paths: Reversal of the investment-uncertainty relationship and flexible biogas plant operation," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1162-1176.
    17. Samer Takriti & John R. Birge, 2000. "Lagrangian Solution Techniques and Bounds for Loosely Coupled Mixed-Integer Stochastic Programs," Operations Research, INFORMS, vol. 48(1), pages 91-98, February.
    18. Fattahi, Salar & Ashraphijuo, Morteza & Lavaei, Javad & Atamtürk, Alper, 2017. "Conic relaxations of the unit commitment problem," Energy, Elsevier, vol. 134(C), pages 1079-1095.
    19. Marshall L. Fisher, 2004. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 50(12_supple), pages 1861-1871, December.
    20. Raymond B. Johnson & Alva J. Svoboda & Claudia Greif & Ali Vojdani & Fulin Zhuang, 1998. "Positioning for a Competitive Electric Industry with PG&E's Hydro-Thermal Optimization Model," Interfaces, INFORMS, vol. 28(1), pages 53-74, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:28:y:2003:i:15:p:1545-1555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.