IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v82y2005i3p228-254.html
   My bibliography  Save this article

Optimisation models for decision support in the development of biomass-based industrial district-heating networks in Italy

Author

Listed:
  • Chinese, Damiana
  • Meneghetti, Antonella

Abstract

A system optimisation approach is proposed to design biomass-based district-heating networks in the context of industrial districts, which are one of the main successful productive aspects of Italian industry. Two different perspectives are taken into account, that of utilities and of policy makers, leading to two optimisation models to be further integrated. A mixed integer linear-programming model is developed for a utility company's profit maximisation, while a linear-programming model aims at minimising the balance of greenhouse-gas emissions related to the proposed energy system and the avoided emissions due to the substitution of current fossil-fuel boilers with district-heating connections. To systematically compare their results, a sensitivity analysis is performed with respect to network size in order to identify how the optimal system configuration, in terms of selected boilers to be connected to a multiple energy-source network, may vary in the two cases and to detect possible optimal sizes. Then a factorial analysis is adopted to rank desirable client types under the two perspectives and identify proper marketing strategies. The proposed optimisation approach was applied to the design of a new district-heating network in the chair-manufacturing district of North-Eastern Italy.

Suggested Citation

  • Chinese, Damiana & Meneghetti, Antonella, 2005. "Optimisation models for decision support in the development of biomass-based industrial district-heating networks in Italy," Applied Energy, Elsevier, vol. 82(3), pages 228-254, November.
  • Handle: RePEc:eee:appene:v:82:y:2005:i:3:p:228-254
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(04)00174-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Messner, S. & Golodnikov, A. & Gritsevskii, A., 1996. "A stochastic version of the dynamic linear programming model MESSAGE III," Energy, Elsevier, vol. 21(9), pages 775-784.
    2. Sundberg, G & Karlsson, B.G, 2000. "Interaction effects in optimising a municipal energy system," Energy, Elsevier, vol. 25(9), pages 877-891.
    3. Lindenberger, D & Bruckner, T & Groscurth, H.-M & Kümmel, R, 2000. "Optimization of solar district heating systems: seasonal storage, heat pumps, and cogeneration," Energy, Elsevier, vol. 25(7), pages 591-608.
    4. Rath-Nagel, St. & Voss, A., 1981. "Energy models for planning and policy assessment," European Journal of Operational Research, Elsevier, vol. 8(2), pages 99-114, October.
    5. Fichtner, W. & Goebelt, M. & Rentz, O., 2001. "The efficiency of international cooperation in mitigating climate change: analysis of joint implementation, the clean development mechanism and emission trading for the Federal Republic of Germany, th," Energy Policy, Elsevier, vol. 29(10), pages 817-830, August.
    6. Chow, T. T. & Chan, Apple L. S. & Song, C. L., 2004. "Building-mix optimization in district cooling system implementation," Applied Energy, Elsevier, vol. 77(1), pages 1-13, January.
    7. Wu, Y. June & Rosen, Marc A., 1999. "Assessing and optimizing the economic and environmental impacts of cogeneration/district energy systems using an energy equilibrium model," Applied Energy, Elsevier, vol. 62(3), pages 141-154, March.
    8. Roberto Aringhieri & Federico Malucelli, 2003. "Optimal Operations Management and Network Planning of a District Heating System with a Combined Heat and Power Plant," Annals of Operations Research, Springer, vol. 120(1), pages 173-199, April.
    9. Dotzauer, Erik, 2003. "Experiences in mid-term planning of district heating systems," Energy, Elsevier, vol. 28(15), pages 1545-1555.
    10. Adamo, L. & Cammarata, G. & Fichera, A. & Marletta, L., 1997. "Improvement of a district heating network through thermoeconomic approach," Renewable Energy, Elsevier, vol. 10(2), pages 213-216.
    11. Meneghetti, Antonella & Nardin, Gioacchino & Simeoni, Patrizia, 2002. "Waste-to-energy application in an industrial district," Applied Energy, Elsevier, vol. 72(1), pages 443-465, May.
    12. Gustavsson, L & Karlsson, Å, 2003. "Heating detached houses in urban areas," Energy, Elsevier, vol. 28(8), pages 851-875.
    13. Van der Voort, E, 1982. "The EFOM 12C energy supply model within the EC modelling system," Omega, Elsevier, vol. 10(5), pages 507-523.
    14. Groscurth, H.-M. & Bruckner, Th. & Kümmel, R., 1995. "Modeling of energy-services supply systems," Energy, Elsevier, vol. 20(9), pages 941-958.
    15. Robert Fourer & David M. Gay & Brian W. Kernighan, 1990. "A Modeling Language for Mathematical Programming," Management Science, INFORMS, vol. 36(5), pages 519-554, May.
    16. Burer, M. & Tanaka, K. & Favrat, D. & Yamada, K., 2003. "Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell–gas turbine combined cycle, heat pumps and chillers," Energy, Elsevier, vol. 28(6), pages 497-518.
    17. Bruckner, Th. & Groscurth, H.-M. & Kümmel, R., 1997. "Competition and synergy between energy technologies in municipal energy systems," Energy, Elsevier, vol. 22(10), pages 1005-1014.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fotouhi Ghazvini, M.A. & Morais, Hugo & Vale, Zita, 2012. "Coordination between mid-term maintenance outage decisions and short-term security-constrained scheduling in smart distribution systems," Applied Energy, Elsevier, vol. 96(C), pages 281-291.
    2. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    3. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    4. Piacentino, Antonio & Cardona, Ennio, 2010. "Scope Oriented Thermoeconomic analysis of energy systems. Part II: Formation Structure of Optimality for robust design," Applied Energy, Elsevier, vol. 87(3), pages 957-970, March.
    5. Chinese, Damiana & Nardin, Gioacchino & Saro, Onorio, 2011. "Multi-criteria analysis for the selection of space heating systems in an industrial building," Energy, Elsevier, vol. 36(1), pages 556-565.
    6. Ren, Hongbo & Gao, Weijun, 2010. "A MILP model for integrated plan and evaluation of distributed energy systems," Applied Energy, Elsevier, vol. 87(3), pages 1001-1014, March.
    7. Omu, Akomeno & Choudhary, Ruchi & Boies, Adam, 2013. "Distributed energy resource system optimisation using mixed integer linear programming," Energy Policy, Elsevier, vol. 61(C), pages 249-266.
    8. Di Somma, M. & Yan, B. & Bianco, N. & Graditi, G. & Luh, P.B. & Mongibello, L. & Naso, V., 2017. "Multi-objective design optimization of distributed energy systems through cost and exergy assessments," Applied Energy, Elsevier, vol. 204(C), pages 1299-1316.
    9. Difs, Kristina & Danestig, Maria & Trygg, Louise, 2009. "Increased use of district heating in industrial processes - Impacts on heat load duration," Applied Energy, Elsevier, vol. 86(11), pages 2327-2334, November.
    10. Akhtari, Shaghaygh & Sowlati, Taraneh & Griess, Verena C., 2018. "Integrated strategic and tactical optimization of forest-based biomass supply chains to consider medium-term supply and demand variations," Applied Energy, Elsevier, vol. 213(C), pages 626-638.
    11. Weinand, Jann Michael & Kleinebrahm, Max & McKenna, Russell & Mainzer, Kai & Fichtner, Wolf, 2019. "Developing a combinatorial optimisation approach to design district heating networks based on deep geothermal energy," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    13. Vesterlund, Mattias & Toffolo, Andrea & Dahl, Jan, 2017. "Optimization of multi-source complex district heating network, a case study," Energy, Elsevier, vol. 126(C), pages 53-63.
    14. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    15. Naraharisetti, Pavan Kumar & Karimi, I.A. & Anand, Abhay & Lee, Dong-Yup, 2011. "A linear diversity constraint – Application to scheduling in microgrids," Energy, Elsevier, vol. 36(7), pages 4235-4243.
    16. Shabani, Nazanin & Sowlati, Taraneh & Ouhimmou, Mustapha & Rönnqvist, Mikael, 2014. "Tactical supply chain planning for a forest biomass power plant under supply uncertainty," Energy, Elsevier, vol. 78(C), pages 346-355.
    17. Piotr Pałka & Marcin Malec & Przemysław Kaszyński & Jacek Kamiński & Piotr Saługa, 2023. "District Heating System Optimisation: A Three-Phase Thermo-Hydraulic Linear Model," Energies, MDPI, vol. 16(8), pages 1-18, April.
    18. Lian, Z.T. & Chua, K.J. & Chou, S.K., 2010. "A thermoeconomic analysis of biomass energy for trigeneration," Applied Energy, Elsevier, vol. 87(1), pages 84-95, January.
    19. Buoro, Dario & Pinamonti, Piero & Reini, Mauro, 2014. "Optimization of a Distributed Cogeneration System with solar district heating," Applied Energy, Elsevier, vol. 124(C), pages 298-308.
    20. Shabani, Nazanin & Akhtari, Shaghaygh & Sowlati, Taraneh, 2013. "Value chain optimization of forest biomass for bioenergy production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 299-311.
    21. Shabani, Nazanin & Sowlati, Taraneh, 2013. "A mixed integer non-linear programming model for tactical value chain optimization of a wood biomass power plant," Applied Energy, Elsevier, vol. 104(C), pages 353-361.
    22. Sandberg, Johan & Larsson, Mikael & Wang, Chuan & Dahl, Jan & Lundgren, Joakim, 2012. "A new optimal solution space based method for increased resolution in energy system optimisation," Applied Energy, Elsevier, vol. 92(C), pages 583-592.
    23. Best, Robert E. & Flager, Forest & Lepech, Michael D., 2015. "Modeling and optimization of building mix and energy supply technology for urban districts," Applied Energy, Elsevier, vol. 159(C), pages 161-177.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    2. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    3. Lindenberger, Dietmar & Bruckner, Thomas & Morrison, Robbie & Groscurth, Helmuth-M. & Kümmel, Reiner, 2004. "Modernization of local energy systems," Energy, Elsevier, vol. 29(2), pages 245-256.
    4. Henning, Dag & Amiri, Shahnaz & Holmgren, Kristina, 2006. "Modelling and optimisation of electricity, steam and district heating production for a local Swedish utility," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1224-1247, December.
    5. Brkić, Dejan & Tanasković, Toma I., 2008. "Systematic approach to natural gas usage for domestic heating in urban areas," Energy, Elsevier, vol. 33(12), pages 1738-1753.
    6. Kassian T.T. Amesho & Emmanuel Innocents Edoun, 2019. "Financing Renewable Energy in Namibia - A Fundamental Key Challenge to the Sustainable Development Goal 7: Ensuring Access to Affordable, Reliable, Sustainable and Modern Energy for All," International Journal of Energy Economics and Policy, Econjournals, vol. 9(5), pages 442-450.
    7. Mavrotas, George & Diakoulaki, Danae & Florios, Kostas & Georgiou, Paraskevas, 2008. "A mathematical programming framework for energy planning in services' sector buildings under uncertainty in load demand: The case of a hospital in Athens," Energy Policy, Elsevier, vol. 36(7), pages 2415-2429, July.
    8. Lindenberger, Dietmar & Kuemmel, Rainer, 2011. "Energy and the State of Nations," EWI Working Papers 2011-11, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    9. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Evaluation of the cost of using power plant reject heat in low-temperature district heating and cooling networks," Applied Energy, Elsevier, vol. 162(C), pages 892-907.
    10. Jae-Ki Byun & Young-Don Choi & Jong-Keun Shin & Myung-Ho Park & Dong-Kurl Kwak, 2012. "Study on the Development of an Optimal Heat Supply Control Algorithm for Group Energy Apartment Buildings According to the Variation of Outdoor Air Temperature," Energies, MDPI, vol. 5(5), pages 1-19, May.
    11. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.
    12. Mokheimer, Esmail M.A. & Dabwan, Yousef N. & Habib, Mohamed A. & Said, Syed A.M. & Al-Sulaiman, Fahad A., 2015. "Development and assessment of integrating parabolic trough collectors with steam generation side of gas turbine cogeneration systems in Saudi Arabia," Applied Energy, Elsevier, vol. 141(C), pages 131-142.
    13. Hiremath, Rahul B. & Kumar, Bimlesh & Balachandra, P. & Ravindranath, N.H., 2010. "Bottom-up approach for decentralised energy planning: Case study of Tumkur district in India," Energy Policy, Elsevier, vol. 38(2), pages 862-874, February.
    14. Guelpa, Elisa & Marincioni, Ludovica & Verda, Vittorio, 2019. "Towards 4th generation district heating: Prediction of building thermal load for optimal management," Energy, Elsevier, vol. 171(C), pages 510-522.
    15. Mavrotas, George & Florios, Kostas & Vlachou, Dimitra, 2010. "Energy planning of a hospital using Mathematical Programming and Monte Carlo simulation for dealing with uncertainty in the economic parameters," MPRA Paper 105754, University Library of Munich, Germany.
    16. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    17. Lindenberger, D & Bruckner, T & Groscurth, H.-M & Kümmel, R, 2000. "Optimization of solar district heating systems: seasonal storage, heat pumps, and cogeneration," Energy, Elsevier, vol. 25(7), pages 591-608.
    18. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
    19. Gang, Wenjie & Wang, Shengwei & Xiao, Fu & Gao, Dian-ce, 2016. "District cooling systems: Technology integration, system optimization, challenges and opportunities for applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 253-264.
    20. Difs, Kristina & Danestig, Maria & Trygg, Louise, 2009. "Increased use of district heating in industrial processes - Impacts on heat load duration," Applied Energy, Elsevier, vol. 86(11), pages 2327-2334, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:82:y:2005:i:3:p:228-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.