IDEAS home Printed from https://ideas.repec.org/p/ris/ewikln/2011_011.html
   My bibliography  Save this paper

Energy and the State of Nations

Author

Listed:
  • Lindenberger, Dietmar

    (Energiewirtschaftliches Institut an der Universitaet zu Koeln)

  • Kuemmel, Rainer

    (Energiewirtschaftliches Institut an der Universitaet zu Koeln)

Abstract

The mathematical conditions for the existence of macroeconomic production functions that are state functions of the economic system are pointed out. The output elasticities and the elasticities of substitution of energy-dependent Cobb-Douglas, CES and LinEx production functions are calculated. The output elasticities, which measure the productive powers of production factors and whose numerical values have been obtained for Germany, Japan, and the USA, are for energy much larger and for labor much smaller than the cost shares of these factors. Energy and its conversion into physical work accounts for most of the growth that mainstream economics attributes to “technological progress” and related concepts. It decisively determines the economic state of nations. Consequences for automation and globalization and perspectives on growth are discussed.

Suggested Citation

  • Lindenberger, Dietmar & Kuemmel, Rainer, 2011. "Energy and the State of Nations," EWI Working Papers 2011-11, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
  • Handle: RePEc:ris:ewikln:2011_011
    as

    Download full text from publisher

    File URL: https://www.ewi.uni-koeln.de/cms/wp-content/uploads/2019/02/EWI_WP_11-11_Energy_and_the_state_of_nations.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert M. Solow, 1994. "Perspectives on Growth Theory," Journal of Economic Perspectives, American Economic Association, vol. 8(1), pages 45-54, Winter.
    2. Luigi L. Pasinetti, 2000. "Critique of the neoclassical theory of growth and distribution," Banca Nazionale del Lavoro Quarterly Review, Banca Nazionale del Lavoro, vol. 53(215), pages 383-431.
    3. Ayres, Robert U. & Warr, Benjamin, 2005. "Accounting for growth: the role of physical work," Structural Change and Economic Dynamics, Elsevier, vol. 16(2), pages 181-209, June.
    4. Lindenberger, D & Bruckner, T & Groscurth, H.-M & Kümmel, R, 2000. "Optimization of solar district heating systems: seasonal storage, heat pumps, and cogeneration," Energy, Elsevier, vol. 25(7), pages 591-608.
    5. Pokrovski, Vladimir N., 2003. "Energy in the theory of production," Energy, Elsevier, vol. 28(8), pages 769-788.
    6. Kümmel, Reiner, 1982. "The impact of energy on industrial growth," Energy, Elsevier, vol. 7(2), pages 189-203.
    7. Groscurth, H.-M. & Kümmel, R. & Van Gool, W., 1989. "Thermodynamic limits to energy optimization," Energy, Elsevier, vol. 14(5), pages 241-258.
    8. Jorgenson, Dale W, 1984. "The Role of Energy in Productivity Growth," American Economic Review, American Economic Association, vol. 74(2), pages 26-30, May.
    9. Robert U. Ayres & Benjamin Warr, 2009. "The Economic Growth Engine," Books, Edward Elgar Publishing, number 13324.
    10. Beaudreau, Bernard C. & Pokrovskii, Vladimir N., 2010. "On the energy content of a money unit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2597-2606.
    11. Kurz,Heinz D. & Salvadori,Neri, 1997. "Theory of Production," Cambridge Books, Cambridge University Press, number 9780521588676.
    12. Jesus Felipe & Franklin M. Fisher, 2003. "Aggregation in Production Functions: What Applied Economists should Know," Metroeconomica, Wiley Blackwell, vol. 54(2‐3), pages 208-262, May.
    13. Luigi L. Pasinetti, 2000. "Critique of the neoclassical theory of growth and distribution," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 53(215), pages 383-431.
    14. R. Stresing & D. Lindenberger & R. Kümmel, 2008. "Cointegration of output, capital, labor, and energy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 66(2), pages 279-287, November.
    15. Bruckner, Th. & Groscurth, H.-M. & Kümmel, R., 1997. "Competition and synergy between energy technologies in municipal energy systems," Energy, Elsevier, vol. 22(10), pages 1005-1014.
    16. Kummel, Reiner & Henn, Julian & Lindenberger, Dietmar, 2002. "Capital, labor, energy and creativity: modeling innovation diffusion," Structural Change and Economic Dynamics, Elsevier, vol. 13(4), pages 415-433, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santos, João & Borges, Afonso S. & Domingos, Tiago, 2021. "Exploring the links between total factor productivity and energy efficiency: Portugal, 1960–2014," Energy Economics, Elsevier, vol. 101(C).
    2. Santos, João & Domingos, Tiago & Sousa, Tânia & St. Aubyn, Miguel, 2016. "Does a small cost share reflect a negligible role for energy in economic production? Testing for aggregate production functions including capital, labor, and useful exergy through a cointegration-base," MPRA Paper 70850, University Library of Munich, Germany.
    3. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    4. Bibas, Ruben & Méjean, Aurélie & Hamdi-Cherif, Meriem, 2015. "Energy efficiency policies and the timing of action: An assessment of climate mitigation costs," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 137-152.
    5. Santos, João & Domingos, Tiago & Sousa, Tânia & St. Aubyn, Miguel, 2018. "Useful Exergy Is Key in Obtaining Plausible Aggregate Production Functions and Recognizing the Role of Energy in Economic Growth: Portugal 1960–2009," Ecological Economics, Elsevier, vol. 148(C), pages 103-120.
    6. Kümmel, Reiner & Lindenberger, Dietmar & Weiser, Florian, 2015. "The economic power of energy and the need to integrate it with energy policy," Energy Policy, Elsevier, vol. 86(C), pages 833-843.
    7. Leiva, Benjamin & Ramirez, Octavio A. & Schramski, John R., 2019. "A framework to consider energy transfers within growth theory," Energy, Elsevier, vol. 178(C), pages 624-630.
    8. Ayres, Robert U. & van den Bergh, Jeroen C.J.M. & Lindenberger, Dietmar & Warr, Benjamin, 2013. "The underestimated contribution of energy to economic growth," Structural Change and Economic Dynamics, Elsevier, vol. 27(C), pages 79-88.
    9. Paoli, Leonardo & Cullen, Jonathan, 2020. "Technical limits for energy conversion efficiency," Energy, Elsevier, vol. 192(C).
    10. Wan-Jiun Chen & Chien-Ho Wang, 2020. "A General Cross-Country Panel Analysis for the Effects of Capitals and Energy, on Economic Growth and Carbon Dioxide Emissions," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    11. Acurio Vásconez, Verónica & Giraud, Gaël & Mc Isaac, Florent & Pham, Ngoc-Sang, 2015. "The effects of oil price shocks in a new-Keynesian framework with capital accumulation," Energy Policy, Elsevier, vol. 86(C), pages 844-854.
    12. Martin de Wit & Matthew Kuperus Heun & Douglas J Crookes, 2013. "An overview of salient factors, relationships and values to support integrated energy-economic systems dynamic modelling," Working Papers 02/2013, Stellenbosch University, Department of Economics.
    13. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    14. Hutzler, S. & Sommer, C. & Richmond, P., 2016. "On the relationship between income, fertility rates and the state of democracy in society," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 9-18.
    15. Germain, Marc, 2019. "Georgescu-Roegen versus Solow/Stiglitz: Back to a controversy," Ecological Economics, Elsevier, vol. 160(C), pages 168-182.
    16. Benjamin Leiva, 2019. "Why Are Prices Proportional to Embodied Energies?," Biophysical Economics and Resource Quality, Springer, vol. 4(3), pages 1-16, September.
    17. Santos, João & Borges, Afonso & Domingos, Tiago, 2020. "Exploring the links between total factor productivity, final-to-useful exergy efficiency, and economic growth: Case study Portugal 1960-2014," MPRA Paper 100214, University Library of Munich, Germany.
    18. Jaime Nieto & Pedro B. Moyano & Diego Moyano & Luis Javier Miguel, 2023. "Is energy intensity a driver of structural change? Empirical evidence from the global economy," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 283-296, February.
    19. Oscar Gonzalo Manrique-Díaz & Diego Fernando Lemus-Polanía, 2020. "Nonlinear optimization method for quantifying the contribution of electricity in the Colombian economic growth, 1925-1997," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 93, pages 65-100, Julio-Dic.
    20. Duro Moreno, Juan Antonio & Giménez-Gómez, José Manuel & Sánchez-Soriano, Joaquín & Vilella Bach, Misericòrdia, 2022. "Allocating remaining carbon budgets and mitigation costs," Working Papers 2072/535074, Universitat Rovira i Virgili, Department of Economics.
    21. Lund, Henrik & Hvelplund, Frede, 2012. "The economic crisis and sustainable development: The design of job creation strategies by use of concrete institutional economics," Energy, Elsevier, vol. 43(1), pages 192-200.
    22. Lindenberger, Dietmar & Kümmel, Reiner, 2013. "The Sledge on the Slope or: Energy in the Economy, and the Paradox of Theory and Policy," EWI Working Papers 2013-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lindenberger, Dietmar & Kümmel, Reiner, 2011. "Energy and the state of nations," Energy, Elsevier, vol. 36(10), pages 6010-6018.
    2. Dietmar Lindenberger & Florian Weiser & Tobias Winkler & Reiner Kümmel, 2017. "Economic Growth in the USA and Germany 1960–2013: The Underestimated Role of Energy," Biophysical Economics and Resource Quality, Springer, vol. 2(3), pages 1-23, September.
    3. Kümmel, Reiner & Lindenberger, Dietmar & Weiser, Florian, 2015. "The economic power of energy and the need to integrate it with energy policy," Energy Policy, Elsevier, vol. 86(C), pages 833-843.
    4. Ayres, Robert U. & van den Bergh, Jeroen C.J.M. & Lindenberger, Dietmar & Warr, Benjamin, 2013. "The underestimated contribution of energy to economic growth," Structural Change and Economic Dynamics, Elsevier, vol. 27(C), pages 79-88.
    5. Richters, Oliver & Siemoneit, Andreas, 2017. "Fear of stagnation? A review on growth imperatives," VÖÖ Discussion Papers 6/2017, Vereinigung für Ökologische Ökonomie e.V. (VÖÖ).
    6. Reiner Kümmel & Dietmar Lindenberger, 2020. "Energy in Growth Accounting and the Aggregation of Capital and Output," Biophysical Economics and Resource Quality, Springer, vol. 5(1), pages 1-10, March.
    7. Zacharias Bragoudakis & Evangelia Kasimati & Christos Pierros & Nikolaos Rodousakis & George Soklis, 2022. "Measuring Productivities for the 38 OECD Member Countries: An Input-Output Modelling Approach," Mathematics, MDPI, vol. 10(13), pages 1-21, July.
    8. Carey W. King, 2021. "Interdependence of Growth, Structure, Size and Resource Consumption During an Economic Growth Cycle," Papers 2106.02512, arXiv.org.
    9. Jesus Felipe & Franklin M. Fisher, 2003. "Aggregation in Production Functions: What Applied Economists should Know," Metroeconomica, Wiley Blackwell, vol. 54(2‐3), pages 208-262, May.
    10. Beaudreau, Bernard C., 2017. "The economies of speed, KE=1/2mv2 and the productivity slowdown," Energy, Elsevier, vol. 124(C), pages 100-113.
    11. Simon Baptist & Cameron Hepburn, 2012. "Intermediate inputs and economic productivity," GRI Working Papers 95, Grantham Research Institute on Climate Change and the Environment.
    12. Richters, Oliver & Siemoneit, Andreas, 2019. "Growth imperatives: Substantiating a contested concept," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 126-137.
    13. Paul E. Brockway & Matthew K. Heun & João Santos & John R. Barrett, 2017. "Energy-Extended CES Aggregate Production: Current Aspects of Their Specification and Econometric Estimation," Energies, MDPI, vol. 10(2), pages 1-23, February.
    14. Yoann Verger, 2015. "Sraffa and the environment," Working Papers hal-01186009, HAL.
    15. Massimo Cingolani, 2008. "Full Employment as a Possible Objective for EU Policy I. A Perspective From the Point of View of The Monetary Circuit," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 55(1), pages 89-114, March.
    16. Blair Fix, 2019. "The Aggregation Problem: Implications for Ecological and Biophysical Economics," Biophysical Economics and Resource Quality, Springer, vol. 4(1), pages 1-15, March.
    17. Dakpogan, Arnaud & Smit, Eon, 2018. "The effect of electricity losses on GDP in Benin," MPRA Paper 89545, University Library of Munich, Germany.
    18. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    19. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    20. Matteo Degasperi & Thomas Fredholm, 2010. "Productivity Accounting Based On Production Prices," Metroeconomica, Wiley Blackwell, vol. 61(2), pages 267-281, May.

    More about this item

    Keywords

    energy; economic growth; macroeconomic production functions; output elasticities;
    All these keywords.

    JEL classification:

    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:ewikln:2011_011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sabine Williams (email available below). General contact details of provider: https://edirc.repec.org/data/ewikode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.