IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipbs0360544222023957.html
   My bibliography  Save this article

An emissions inventory using flight information reveals the long-term changes of aviation CO2 emissions in China

Author

Listed:
  • Lyu, Chen
  • Liu, Xiaoman
  • Wang, Zhen
  • Yang, Lu
  • Liu, Hao
  • Yang, Nan
  • Xu, Shaodong
  • Cao, Libin
  • Zhang, Zhe
  • Pang, Lingyun
  • Zhang, Li
  • Cai, Bofeng

Abstract

The low-carbon development of air transport industry is of great significance for China to achieve the commitment of carbon peak and carbon neutrality goals. In order to improve the basic data of aviation CO2 emissions, this study continuously collected full flight information in China from January 2017 to December 2020, and established a flight information database and an aircraft-engine parameter database. On the basis of IPCC's Tier 3B accounting method, this study established a long-term aviation CO2 emissions inventory of China from 2017 to 2020 by calculating and accumulating CO2 emissions of each flight. And aviation CO2 emissions of various provinces and cities in China were calculated combined with spatial allocation method. The results showed that aviation CO2 emissions in China was 104.1, 120.1, 136.9, and 88.3 Mt in 2017, 2018, 2019, and 2020, respectively, with annual growth rates of 15.4%, 14.0%, and −35.3% in 2018, 2019, and 2020, respectively. Affected by the COVID-19 pandemic, aviation CO2 emissions in all 31 provinces and 93% of cities decreased in 2020 compared with 2019. China is in the stage of rapid development of air transport industry, and aviation fossil energy consumption and CO2 emissions have continued to grow in recent years.

Suggested Citation

  • Lyu, Chen & Liu, Xiaoman & Wang, Zhen & Yang, Lu & Liu, Hao & Yang, Nan & Xu, Shaodong & Cao, Libin & Zhang, Zhe & Pang, Lingyun & Zhang, Li & Cai, Bofeng, 2023. "An emissions inventory using flight information reveals the long-term changes of aviation CO2 emissions in China," Energy, Elsevier, vol. 262(PB).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222023957
    DOI: 10.1016/j.energy.2022.125513
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222023957
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125513?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linden, Erik, 2021. "Pandemics and environmental shocks: What aviation managers should learn from COVID-19 for long-term planning," Journal of Air Transport Management, Elsevier, vol. 90(C).
    2. Wu, Chuntao & He, Xiaohe & Dou, Yi, 2019. "Regional disparity and driving forces of CO2 emissions: Evidence from China's domestic aviation transport sector," Journal of Transport Geography, Elsevier, vol. 76(C), pages 71-82.
    3. Pagoni, Ioanna & Psaraki-Kalouptsidi, Voula, 2016. "The impact of carbon emission fees on passenger demand and air fares: A game theoretic approach," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 41-51.
    4. Wood, F.R. & Bows, A. & Anderson, K., 2010. "Apportioning aviation CO2 emissions to regional administrations for monitoring and target setting," Transport Policy, Elsevier, vol. 17(4), pages 206-215, August.
    5. Smith, L. Vanessa & Tarui, Nori & Yamagata, Takashi, 2021. "Assessing the impact of COVID-19 on global fossil fuel consumption and CO2 emissions," Energy Economics, Elsevier, vol. 97(C).
    6. Zhu Liu & Philippe Ciais & Zhu Deng & Ruixue Lei & Steven J. Davis & Sha Feng & Bo Zheng & Duo Cui & Xinyu Dou & Biqing Zhu & Rui Guo & Piyu Ke & Taochun Sun & Chenxi Lu & Pan He & Yuan Wang & Xu Yue , 2020. "Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    7. Nava, Consuelo R. & Meleo, Linda & Cassetta, Ernesto & Morelli, Giovanna, 2018. "The impact of the EU-ETS on the aviation sector: Competitive effects of abatement efforts by airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 20-34.
    8. Corinne Le Quéré & Robert B. Jackson & Matthew W. Jones & Adam J. P. Smith & Sam Abernethy & Robbie M. Andrew & Anthony J. De-Gol & David R. Willis & Yuli Shan & Josep G. Canadell & Pierre Friedlingst, 2020. "Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement," Nature Climate Change, Nature, vol. 10(7), pages 647-653, July.
    9. Bazzo Vieira, João Pedro & Vieira Braga, Carlos Kauê & Pereira, Rafael H.M., 2022. "The impact of COVID-19 on air passenger demand and CO2 emissions in Brazil," Energy Policy, Elsevier, vol. 164(C).
    10. Brueckner, Jan K. & Abreu, Chrystyane, 2017. "Airline fuel usage and carbon emissions: Determining factors," Journal of Air Transport Management, Elsevier, vol. 62(C), pages 10-17.
    11. Tokuslu, Aydin, 2020. "Estimation of aircraft emissions at Georgian international airport," Energy, Elsevier, vol. 206(C).
    12. Zhou, Wenji & Wang, Tao & Yu, Yadong & Chen, Dingjiang & Zhu, Bing, 2016. "Scenario analysis of CO2 emissions from China’s civil aviation industry through 2030," Applied Energy, Elsevier, vol. 175(C), pages 100-108.
    13. Oesingmann, Katrin, 2022. "The effect of the European Emissions Trading System (EU ETS) on aviation demand: An empirical comparison with the impact of ticket taxes," Energy Policy, Elsevier, vol. 160(C).
    14. Edwards, Holly A. & Dixon-Hardy, Darron & Wadud, Zia, 2016. "Aircraft cost index and the future of carbon emissions from air travel," Applied Energy, Elsevier, vol. 164(C), pages 553-562.
    15. Loo, Becky P.Y. & Li, Linna & Psaraki, Voula & Pagoni, Ioanna, 2014. "CO2 emissions associated with hubbing activities in air transport: an international comparison," Journal of Transport Geography, Elsevier, vol. 34(C), pages 185-193.
    16. Ion V. Ion & Antoaneta Ene, 2021. "Evaluation of Greenhouse Gas Emissions from Reservoirs: A Review," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    17. Yu, Jinglei & Shao, Chaofeng & Xue, Chenyang & Hu, Huaqing, 2020. "China's aircraft-related CO2 emissions: Decomposition analysis, decoupling status, and future trends," Energy Policy, Elsevier, vol. 138(C).
    18. Suau-Sanchez, Pere & Voltes-Dorta, Augusto & Cugueró-Escofet, Natàlia, 2020. "An early assessment of the impact of COVID-19 on air transport: Just another crisis or the end of aviation as we know it?," Journal of Transport Geography, Elsevier, vol. 86(C).
    19. Li, Rongrong & Li, Shuyu, 2021. "Carbon emission post-coronavirus: Continual decline or rebound?," Structural Change and Economic Dynamics, Elsevier, vol. 57(C), pages 57-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiurui Guo & Chunxiao Ning & Yaqian Shen & Chang Yao & Dongsheng Chen & Shuiyuan Cheng, 2023. "Projection of the Co-Reduced Emissions of CO 2 and Air Pollutants from Civil Aviation in China," Sustainability, MDPI, vol. 15(9), pages 1-23, April.
    2. Cao, Feng & Tang, Tie-Qiao & Gao, Yunqi & You, Feng & Zhang, Jian, 2023. "Calculation and analysis of new taxiing methods on aircraft fuel consumption and pollutant emissions," Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yongling & Wang, Jiaoe & Huang, Jie & Chen, Zhuo, 2022. "Impact of COVID-19 on domestic air transportation in China," Transport Policy, Elsevier, vol. 122(C), pages 95-103.
    2. Wu, Chuntao & He, Xiaohe & Dou, Yi, 2019. "Regional disparity and driving forces of CO2 emissions: Evidence from China's domestic aviation transport sector," Journal of Transport Geography, Elsevier, vol. 76(C), pages 71-82.
    3. Shah, Muhammad Ibrahim & Foglia, Matteo & Shahzad, Umer & Fareed, Zeeshan, 2022. "Green innovation, resource price and carbon emissions during the COVID-19 times: New findings from wavelet local multiple correlation analysis," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    4. Xiurui Guo & Chunxiao Ning & Yaqian Shen & Chang Yao & Dongsheng Chen & Shuiyuan Cheng, 2023. "Projection of the Co-Reduced Emissions of CO 2 and Air Pollutants from Civil Aviation in China," Sustainability, MDPI, vol. 15(9), pages 1-23, April.
    5. Haxhimusa, Adhurim & Liebensteiner, Mario, 2021. "Effects of electricity demand reductions under a carbon pricing regime on emissions: lessons from COVID-19," Energy Policy, Elsevier, vol. 156(C).
    6. Michelmann, Johannes & Schmalz, Ulrike & Becker, Axel & Stroh, Florian & Behnke, Sebastian & Hornung, Mirko, 2023. "Influence of COVID-19 on air travel - A scenario study toward future trusted aviation," Journal of Air Transport Management, Elsevier, vol. 106(C).
    7. Aras, Serkan & Hanifi Van, M., 2022. "An interpretable forecasting framework for energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 328(C).
    8. Jiang, Shiqi & Lin, Xinyue & Qi, Lingli & Zhang, Yongqiang & Sharp, Basil, 2022. "The macro-economic and CO2 emissions impacts of COVID-19 and recovery policies in China," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 981-996.
    9. Ze, Fu & Wong, Wing-Keung & Alhasan, Tariq kamal & Al Shraah, Ata & Ali, Anis & Muda, Iskandar, 2023. "Economic development, natural resource utilization, GHG emissions and sustainable development: A case study of China," Resources Policy, Elsevier, vol. 83(C).
    10. Chen, Shangrong & Bravo-Melgarejo, Sai & Mongeau, Romain & Malavolti, Estelle, 2023. "Adopting and diffusing hydrogen technology in air transport: An evolutionary game theory approach," Energy Economics, Elsevier, vol. 125(C).
    11. Kito, Minami, 2021. "Impact of aircraft lifetime change on lifecycle CO2 emissions and costs in Japan," Ecological Economics, Elsevier, vol. 188(C).
    12. Yu Wang & Kaibo Yuan & Mengyuan Zhu & Shuijin Li, 2023. "A Time-and-Space-Network-Based Green Fleet Planning Model and Its Application for a Hub-and-Spoke Network," Sustainability, MDPI, vol. 15(7), pages 1-26, March.
    13. Goldberg, C. & Nalianda, D. & Sethi, V. & Pilidis, P. & Singh, R. & Kyprianidis, K., 2018. "Assessment of an energy-efficient aircraft concept from a techno-economic perspective," Applied Energy, Elsevier, vol. 221(C), pages 229-238.
    14. Cottafava, Dario & Gastaldo, Michele & Quatraro, Francesco & Santhiá, Cristina, 2022. "Modeling economic losses and greenhouse gas emissions reduction during the COVID-19 pandemic: Past, present, and future scenarios for Italy," Economic Modelling, Elsevier, vol. 110(C).
    15. Sun, Xiaoqian & Wandelt, Sebastian & Zhang, Anming, 2022. "STARTUPS: Founding airlines during COVID-19 - A hopeless endeavor or an ample opportunity for a better aviation system?," Transport Policy, Elsevier, vol. 118(C), pages 10-19.
    16. Jia, Zhijie & Wen, Shiyan & Lin, Boqiang, 2021. "The effects and reacts of COVID-19 pandemic and international oil price on energy, economy, and environment in China," Applied Energy, Elsevier, vol. 302(C).
    17. Peter Hemmings & Michael Mulheron & Richard J. Murphy & Matt Prescott, 2021. "Investigating the Impact of COVID-19 Disruption on the Decarbonisation Agenda at Airports: Grounded or Ready for Take-Off?," Sustainability, MDPI, vol. 13(21), pages 1-25, November.
    18. Yue‐Jun Zhang & Wei Shi & Lin Jiang, 2020. "Does China's carbon emissions trading policy improve the technology innovation of relevant enterprises?," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 872-885, March.
    19. Cheng Li & Yangzhou Li & Jian Xing, 2023. "Multivariate Grey Prediction Model Application in Civil Aviation Carbon Emission Based on Fractional Order Accumulation and Background Value Optimization," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    20. Schmalz, Ulrike & Paul, Annika & Gissibl, Viola, 2021. "An explorative study of corporate travellers’ perception at a German airport," Journal of Air Transport Management, Elsevier, vol. 92(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222023957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.