IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v231y2021ics0360544221012068.html
   My bibliography  Save this article

Segmented carbon tax may significantly affect the regional and national economy and environment-a CGE-based analysis for Guangdong Province

Author

Listed:
  • Zhai, Mengyu
  • Huang, Guohe
  • Liu, Lirong
  • Guo, Zhengquan
  • Su, Shuai

Abstract

Facing the conflicts of climate change, energy consumption, carbon emission, and economic development, it is essential to investigate the impacts of the carbon tax policy implemented in specific regions. A CGE-based multi-dimensional carbon policy (CMDCP) model is developed to i) explore the inter-provincial interdependences by interfering with the economic policies of a single province, and ii) quantify interactive relationships among various components including climate, energy, carbon economy and tax. Integrated approach of computable general equilibrium model and input-output analysis is applied to a series of segmented carbon tax schemes for Guangdong IC modeling and China IE modeling. It is found that when the carbon tax rate is 100 yuan/ton, the GDP of Guangdong will fall by less than 0.5% under three scenario types. At the same time, they could bring 1.3, 1.2 and 1.6 million tons of emission reductions. Levying the carbon tax based on the difference in carbon emission volume is most beneficial for emission intensity reduction. For China, the impact of the segmented carbon tax in specific province has a slight impact on the entire supply chain emissions. It is suggested that a carbon tax of 10–40 yuan/ton could be adopted by Guangdong. Moreover, Guangdong could consider implementing the stepped carbon tax for it can effectively avoid the lack of flexibility of traditional carbon tax policy.

Suggested Citation

  • Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Guo, Zhengquan & Su, Shuai, 2021. "Segmented carbon tax may significantly affect the regional and national economy and environment-a CGE-based analysis for Guangdong Province," Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221012068
    DOI: 10.1016/j.energy.2021.120958
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221012068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhiyong Yang & Wenjie Dong & Jinfeng Xiu & Rufeng Dai & Jieming Chou, 2015. "Structural Path Analysis of Fossil Fuel Based CO2 Emissions: A Case Study for China," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-25, September.
    2. Ning, Yadong & Chen, Kunkun & Zhang, Boya & Ding, Tao & Guo, Fei & Zhang, Ming, 2020. "Energy conservation and emission reduction path selection in China: A simulation based on Bi-Level multi-objective optimization model," Energy Policy, Elsevier, vol. 137(C).
    3. Ghaith, Ahmad F. & Epplin, Francis M., 2017. "Consequences of a carbon tax on household electricity use and cost, carbon emissions, and economics of household solar and wind," Energy Economics, Elsevier, vol. 67(C), pages 159-168.
    4. Beck, Marisa & Rivers, Nicholas & Wigle, Randall & Yonezawa, Hidemichi, 2015. "Carbon tax and revenue recycling: Impacts on households in British Columbia," Resource and Energy Economics, Elsevier, vol. 41(C), pages 40-69.
    5. Yu, L. & Li, Y.P. & Huang, G.H., 2016. "A fuzzy-stochastic simulation-optimization model for planning electric power systems with considering peak-electricity demand: A case study of Qingdao, China," Energy, Elsevier, vol. 98(C), pages 190-203.
    6. Ding, Suiting & Zhang, Ming & Song, Yan, 2019. "Exploring China's carbon emissions peak for different carbon tax scenarios," Energy Policy, Elsevier, vol. 129(C), pages 1245-1252.
    7. Llop, Maria & Ponce-Alifonso, Xavier, 2015. "Identifying the role of final consumption in structural path analysis: An application to water uses," Ecological Economics, Elsevier, vol. 109(C), pages 203-210.
    8. Go, Delfin S. & Lofgren, Hans & Ramos, Fabian Mendez & Robinson, Sherman, 2016. "Estimating parameters and structural change in CGE models using a Bayesian cross-entropy estimation approach," Economic Modelling, Elsevier, vol. 52(PB), pages 790-811.
    9. Edjabou, Louise Dyhr & Smed, Sinne, 2013. "The effect of using consumption taxes on foods to promote climate friendly diets – The case of Denmark," Food Policy, Elsevier, vol. 39(C), pages 84-96.
    10. Guo, Zhengquan & Zhang, Xingping & Zheng, Yuhua & Rao, Rao, 2014. "Exploring the impacts of a carbon tax on the Chinese economy using a CGE model with a detailed disaggregation of energy sectors," Energy Economics, Elsevier, vol. 45(C), pages 455-462.
    11. Song, Yan & Sun, Junjie & Zhang, Ming & Su, Bin, 2020. "Using the Tapio-Z decoupling model to evaluate the decoupling status of China's CO2 emissions at provincial level and its dynamic trend," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 120-129.
    12. Orlov, Anton & Grethe, Harald, 2012. "Carbon taxation and market structure: A CGE analysis for Russia," Energy Policy, Elsevier, vol. 51(C), pages 696-707.
    13. Wang, Peng & Dai, Han-cheng & Ren, Song-yan & Zhao, Dai-qing & Masui, Toshihiko, 2015. "Achieving Copenhagen target through carbon emission trading: Economic impacts assessment in Guangdong Province of China," Energy, Elsevier, vol. 79(C), pages 212-227.
    14. Xie, Y.L. & Xia, D.H. & Ji, L. & Zhou, W.N. & Huang, G.H., 2017. "An inexact cost-risk balanced model for regional energy structure adjustment management and resources environmental effect analysis-a case study of Shandong province, China," Energy, Elsevier, vol. 126(C), pages 374-391.
    15. Sovacool, Benjamin K., 2013. "Energy policymaking in Denmark: Implications for global energy security and sustainability," Energy Policy, Elsevier, vol. 61(C), pages 829-839.
    16. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    17. Wolsky, Alan Martin, 1984. "Disaggregating Input-Output Models," The Review of Economics and Statistics, MIT Press, vol. 66(2), pages 283-291, May.
    18. Zhang, Yue-Jun & Sun, Ya-Fang & Huang, Junling, 2018. "Energy efficiency, carbon emission performance, and technology gaps: Evidence from CDM project investment," Energy Policy, Elsevier, vol. 115(C), pages 119-130.
    19. Liu, Lirong & Huang, Guohe & Baetz, Brian & Huang, Charley Z. & Zhang, Kaiqiang, 2019. "Integrated GHG emissions and emission relationships analysis through a disaggregated ecologically-extended input-output model; A case study for Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 97-109.
    20. Nakata, T, 2002. "Analysis of the impacts of nuclear phase-out on energy systems in Japan," Energy, Elsevier, vol. 27(4), pages 363-377.
    21. Zhang, Bo & Qu, Xue & Meng, Jing & Sun, Xudong, 2017. "Identifying primary energy requirements in structural path analysis: A case study of China 2012," Applied Energy, Elsevier, vol. 191(C), pages 425-435.
    22. Yao, Xin & Zhou, Hongchen & Zhang, Aizhen & Li, Aijun, 2015. "Regional energy efficiency, carbon emission performance and technology gaps in China: A meta-frontier non-radial directional distance function analysis," Energy Policy, Elsevier, vol. 84(C), pages 142-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lv, J. & Li, Y.P. & Huang, G.H. & Ding, Y.K. & Li, X. & Li, Y., 2022. "Planning energy economy and eco-environment nexus system under uncertainty: A copula-based stochastic multi-level programming method," Applied Energy, Elsevier, vol. 312(C).
    2. Shu Mo & Ting Wang, 2022. "Synergistic Effects of International Oil Price Fluctuations and Carbon Tax Policies on the Energy–Economy–Environment System in China," IJERPH, MDPI, vol. 19(21), pages 1-17, October.
    3. Weijiang Liu & Min Liu & Tingting Liu & Yangyang Li & Yizhe Hao, 2022. "Does a Recycling Carbon Tax with Technological Progress in Clean Electricity Drive the Green Economy?," IJERPH, MDPI, vol. 19(3), pages 1-18, February.
    4. Beibei Cheng & Peng Wang & Songyan Ren, 2023. "An Evaluation on Sectoral Competitiveness of Guangdong in China: The Role of Carbon Taxation Policy," Energies, MDPI, vol. 16(4), pages 1-21, February.
    5. Wang, G.Y. & Li, Y.P. & Liu, J. & Huang, G.H. & Chen, L.R. & Yang, Y.J. & Gao, P.P., 2022. "A two-phase factorial input-output model for analyzing CO2-emission reduction pathway and strategy from multiple perspectives – A case study of Fujian province," Energy, Elsevier, vol. 248(C).
    6. Songyan Ren & Peng Wang & Zewei Lin & Daiqing Zhao, 2022. "The Policy Choice and Economic Assessment of High Emissions Industries to Achieve the Carbon Peak Target under Energy Shortage—A Case Study of Guangdong Province," Energies, MDPI, vol. 15(18), pages 1-22, September.
    7. Zhang, Jinbo & Liu, Lirong & Xie, Yulei & Han, Dengcheng & Zhang, Yang & Li, Zheng & Guo, Huaicheng, 2023. "Revealing the impact of an energy–water–carbon nexus–based joint tax management policy on the environ-economic system," Applied Energy, Elsevier, vol. 331(C).
    8. Hanbo Wu & Yaxin Sun & Yutong Su & Ming Chen & Hongxia Zhao & Qi Li, 2022. "Which Is the Best Supply Chain Policy: Carbon Tax, or a Low-Carbon Subsidy?," Sustainability, MDPI, vol. 14(10), pages 1-20, May.
    9. Zhang, Pan & Wang, Huan, 2022. "Do provincial energy policies and energy intensity targets help reduce CO2 emissions? Evidence from China," Energy, Elsevier, vol. 245(C).
    10. Dong, Jia & Li, Cunbin, 2022. "Scenario prediction and decoupling analysis of carbon emission in Jiangsu Province, China," Technological Forecasting and Social Change, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Lirong & Huang, Charley Z. & Huang, Guohe & Baetz, Brian & Pittendrigh, Scott M., 2018. "How a carbon tax will affect an emission-intensive economy: A case study of the Province of Saskatchewan, Canada," Energy, Elsevier, vol. 159(C), pages 817-826.
    2. Chen, Zhenling & Zhang, Xiaoling & Ni, Guohua, 2020. "Decomposing capacity utilization under carbon dioxide emissions reduction constraints in data envelopment analysis: An application to Chinese regions," Energy Policy, Elsevier, vol. 139(C).
    3. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
    4. Abdul-Salam, Yakubu & Kemp, Alex & Phimister, Euan, 2022. "Energy transition in the UKCS – Modelling the effects of carbon emission charges on upstream petroleum operations," Energy Economics, Elsevier, vol. 108(C).
    5. Wang, Zhen & Wei, Liyuan & Niu, Beibei & Liu, Yong & Bin, Guoshu, 2017. "Controlling embedded carbon emissions of sectors along the supply chains: A perspective of the power-of-pull approach," Applied Energy, Elsevier, vol. 206(C), pages 1544-1551.
    6. Li, Xiaoyu & Yao, Xilong, 2020. "Can energy supply-side and demand-side policies for energy saving and emission reduction be synergistic?--- A simulated study on China's coal capacity cut and carbon tax," Energy Policy, Elsevier, vol. 138(C).
    7. Feng, Cuiyang & Tang, Xu & Jin, Yi & Guo, Yuhua & Zhang, Xiaochuan, 2019. "Regional energy-water nexus based on structural path betweenness: A case study of Shanxi Province, China," Energy Policy, Elsevier, vol. 127(C), pages 102-112.
    8. Zhen, Wei & Zhong, Zhangqi & Wang, Yichen & Miao, Lu & Qin, Quande & Wei, Yi-Ming, 2019. "Evolution of urban household indirect carbon emission responsibility from an inter-sectoral perspective: A case study of Guangdong, China," Energy Economics, Elsevier, vol. 83(C), pages 197-207.
    9. Chang K. Seung & Do-Hoon Kim, 2020. "Examining Supply Chain for Seafood Industries Using Structural Path Analysis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    10. Niu, Tong & Yao, Xilong & Shao, Shuai & Li, Ding & Wang, Wenxi, 2018. "Environmental tax shocks and carbon emissions: An estimated DSGE model," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 9-17.
    11. Wenwen Zhang & Shichun Xu & Zhengxia He & Basil Sharp & Bin Zhao & Shuxiao Wang, 2019. "Impacts of U.S. Carbon Tariffs on China’s Foreign Trade and Social Welfare," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    12. Songyan Ren & Peng Wang & Zewei Lin & Daiqing Zhao, 2022. "The Policy Choice and Economic Assessment of High Emissions Industries to Achieve the Carbon Peak Target under Energy Shortage—A Case Study of Guangdong Province," Energies, MDPI, vol. 15(18), pages 1-22, September.
    13. Liu, Lan-Cui & Cheng, Lei & Zhao, Lu-Tao & Cao, Ying & Wang, Ce, 2020. "Investigating the significant variation of coal consumption in China in 2002-2017," Energy, Elsevier, vol. 207(C).
    14. Wei Yang & Junnian Song, 2019. "Depicting Flows of Embodied Water Pollutant Discharge within Production System: Case of an Undeveloped Region," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    15. Fan, Jing-Li & Zhang, Hao & Zhang, Xian, 2020. "Unified efficiency measurement of coal-fired power plants in China considering group heterogeneity and technological gaps," Energy Economics, Elsevier, vol. 88(C).
    16. Zhang, Bo & Qu, Xue & Meng, Jing & Sun, Xudong, 2017. "Identifying primary energy requirements in structural path analysis: A case study of China 2012," Applied Energy, Elsevier, vol. 191(C), pages 425-435.
    17. Ding, Li-Li & Lei, Liang & Zhao, Xin & Calin, Adrian Cantemir, 2020. "Modelling energy and carbon emission performance: A constrained performance index measure," Energy, Elsevier, vol. 197(C).
    18. Yingbin Zhou & Siqi Lv & Jianlin Wang & Junbo Tong & Zhong Fang, 2022. "The Impact of Green Taxes on the Carbon Emission Efficiency of China’s Construction Industry," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
    19. McLaughlin, Craig & Elamer, Ahmed A. & Glen, Thomas & AlHares, Aws & Gaber, Hazem Rasheed, 2019. "Accounting society's acceptability of carbon taxes: Expectations and reality," Energy Policy, Elsevier, vol. 131(C), pages 302-311.
    20. Zhang, Yue-Jun & Jiang, Lin & Shi, Wei, 2020. "Exploring the growth-adjusted energy-emission efficiency of transportation industry in China," Energy Economics, Elsevier, vol. 90(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221012068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.