IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v229y2021ics0360544221009798.html
   My bibliography  Save this article

An innovative approach for estimating energy demand and supply to inform local energy transitions

Author

Listed:
  • McGookin, Connor
  • Ó Gallachóir, Brian
  • Byrne, Edmond

Abstract

A vital first step for regional energy transitions is to develop an understanding of the current energy balance and related carbon dioxide emissions. However, there is a lack of clarity within existing literature on how best to determine a complete regional energy balance including industry, residential, services, agriculture, and transport sectors. This paper identifies four key limitations in the literature: over-reliance on simple population-based proportioning, a narrow focus on building energy, subsequent omission of transport energy in the majority of studies and a lack of transparency in a significant number of studies. This paper proposes a novel conceptual framework to address these gaps using a combination of local energy usage indicators and national unit energy consumption statistics. The authors apply this multi-dimensional approach to a rural case study region, carefully examining the range of energy usage indicators in each sector before selecting the most suitable. The results quantitatively demonstrate the value of this approach, with the final energy demand in some sectors varying by as much as double or threefold compared with a population weighting. Focusing on the socio-economic drivers of energy demand in this manner provides useful insights into the local context that defines the energy system.

Suggested Citation

  • McGookin, Connor & Ó Gallachóir, Brian & Byrne, Edmond, 2021. "An innovative approach for estimating energy demand and supply to inform local energy transitions," Energy, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:energy:v:229:y:2021:i:c:s0360544221009798
    DOI: 10.1016/j.energy.2021.120731
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221009798
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weinand, Jann Michael & McKenna, Russell & Kleinebrahm, Max & Mainzer, Kai, 2019. "Assessing the contribution of simultaneous heat and power generation from geothermal plants in off-grid municipalities," Applied Energy, Elsevier, vol. 255(C).
    2. Silveria, Fernando Castellanos & Luken, Ralph A., 2008. "Global overview of industrial energy intensity," Energy Policy, Elsevier, vol. 36(7), pages 2658-2664, July.
    3. Petrović, Stefan & Karlsson, Kenneth, 2016. "Ringkøbing-Skjern energy atlas for analysis of heat saving potentials in building stock," Energy, Elsevier, vol. 110(C), pages 166-177.
    4. Weinand, Jann & Ried, Sabrina & Kleinebrahm, Max & McKenna, Russell & Fichtner, Wolf, 2020. "Identification of potential off-grid municipalities with 100% renewable energy supply," Working Paper Series in Production and Energy 40, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    5. Zhao, Guangling & Guerrero, Josep M. & Jiang, Kejun & Chen, Sha, 2017. "Energy modelling towards low carbon development of Beijing in 2030," Energy, Elsevier, vol. 121(C), pages 107-113.
    6. Curtin, Richard, 2011. "An energy balance and greenhouse gas profile for county Wexford, Ireland in 2006," Applied Energy, Elsevier, vol. 88(11), pages 3773-3781.
    7. Sperling, Karl & Hvelplund, Frede & Mathiesen, Brian Vad, 2011. "Centralisation and decentralisation in strategic municipal energy planning in Denmark," Energy Policy, Elsevier, vol. 39(3), pages 1338-1351, March.
    8. Schmidt, J. & Schönhart, M. & Biberacher, M. & Guggenberger, T. & Hausl, S. & Kalt, G. & Leduc, S. & Schardinger, I. & Schmid, E., 2012. "Regional energy autarky: Potentials, costs and consequences for an Austrian region," Energy Policy, Elsevier, vol. 47(C), pages 211-221.
    9. Kiss, Viktor Miklós, 2015. "Modelling the energy system of Pécs – The first step towards a sustainable city," Energy, Elsevier, vol. 80(C), pages 373-387.
    10. Sveinbjörnsson, Dadi & Ben Amer-Allam, Sara & Hansen, Anders Bavnhøj & Algren, Loui & Pedersen, Allan Schrøder, 2017. "Energy supply modelling of a low-CO2 emitting energy system: Case study of a Danish municipality," Applied Energy, Elsevier, vol. 195(C), pages 922-941.
    11. Comodi, Gabriele & Cioccolanti, Luca & Polonara, Fabio & Brandoni, Caterina, 2012. "Local authorities in the context of energy and climate policy," Energy Policy, Elsevier, vol. 51(C), pages 737-748.
    12. Koirala, Binod Prasad & Koliou, Elta & Friege, Jonas & Hakvoort, Rudi A. & Herder, Paulien M., 2016. "Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 722-744.
    13. Brandoni, Caterina & Polonara, Fabio, 2012. "The role of municipal energy planning in the regional energy-planning process," Energy, Elsevier, vol. 48(1), pages 323-338.
    14. Hannah Mareike Marczinkowski & Poul Alberg Østergaard & Søren Roth Djørup, 2019. "Transitioning Island Energy Systems—Local Conditions, Development Phases, and Renewable Energy Integration," Energies, MDPI, vol. 12(18), pages 1-20, September.
    15. Sperling, Karl & Möller, Bernd, 2012. "End-use energy savings and district heating expansion in a local renewable energy system – A short-term perspective," Applied Energy, Elsevier, vol. 92(C), pages 831-842.
    16. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2016. "The role of decentralized generation and storage technologies in future energy systems planning for a rural agglomeration in Switzerland," Energy Policy, Elsevier, vol. 96(C), pages 432-445.
    17. Doukas, Haris & Papadopoulou, Alexandra & Savvakis, Nikolaos & Tsoutsos, Theocharis & Psarras, John, 2012. "Assessing energy sustainability of rural communities using Principal Component Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1949-1957.
    18. Ahn, Young-Hwan & Woo, Jung-Hun & Wagner, Fabian & Yoo, Seung Jick, 2019. "Downscaled energy demand projection at the local level using the Iterative Proportional Fitting procedure," Applied Energy, Elsevier, vol. 238(C), pages 384-400.
    19. Jenssen, Till & König, Andreas & Eltrop, Ludger, 2014. "Bioenergy villages in Germany: Bringing a low carbon energy supply for rural areas into practice," Renewable Energy, Elsevier, vol. 61(C), pages 74-80.
    20. De Luca, G. & Fabozzi, S. & Massarotti, N. & Vanoli, L., 2018. "A renewable energy system for a nearly zero greenhouse city: Case study of a small city in southern Italy," Energy, Elsevier, vol. 143(C), pages 347-362.
    21. Assoumou, Edi & Marmorat, Jean-Paul & Roy, Valérie, 2015. "Investigating long-term energy and CO2 mitigation options at city scale: A technical analysis for the city of Bologna," Energy, Elsevier, vol. 92(P3), pages 592-611.
    22. Hecher, Maria & Vilsmaier, Ulli & Akhavan, Roya & Binder, Claudia R., 2016. "An integrative analysis of energy transitions in energy regions: A case study of ökoEnergieland in Austria," Ecological Economics, Elsevier, vol. 121(C), pages 40-53.
    23. Di Leo, Senatro & Pietrapertosa, Filomena & Loperte, Simona & Salvia, Monica & Cosmi, Carmelina, 2015. "Energy systems modelling to support key strategic decisions in energy and climate change at regional scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 394-414.
    24. Mundaca, Luis & Busch, Henner & Schwer, Sophie, 2018. "‘Successful’ low-carbon energy transitions at the community level? An energy justice perspective," Applied Energy, Elsevier, vol. 218(C), pages 292-303.
    25. Nilsson, J. Stenlund & Mårtensson, A., 2003. "Municipal energy-planning and development of local energy-systems," Applied Energy, Elsevier, vol. 76(1-3), pages 179-187, September.
    26. Weinand, J.M. & McKenna, R. & Fichtner, W., 2019. "Developing a municipality typology for modelling decentralised energy systems," Utilities Policy, Elsevier, vol. 57(C), pages 75-96.
    27. Kohler, M. & Blond, N. & Clappier, A., 2016. "A city scale degree-day method to assess building space heating energy demands in Strasbourg Eurometropolis (France)," Applied Energy, Elsevier, vol. 184(C), pages 40-54.
    28. Müller, Matthias Otto & Stämpfli, Adrian & Dold, Ursula & Hammer, Thomas, 2011. "Energy autarky: A conceptual framework for sustainable regional development," Energy Policy, Elsevier, vol. 39(10), pages 5800-5810, October.
    29. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2017. "Cost optimal urban energy systems planning in the context of national energy policies: A case study for the city of Basel," Energy Policy, Elsevier, vol. 110(C), pages 176-190.
    30. Lund, Henrik & Hvelplund, Frede, 2012. "The economic crisis and sustainable development: The design of job creation strategies by use of concrete institutional economics," Energy, Elsevier, vol. 43(1), pages 192-200.
    31. Comodi, G. & Cioccolanti, L. & Gargiulo, M., 2012. "Municipal scale scenario: Analysis of an Italian seaside town with MarkAL-TIMES," Energy Policy, Elsevier, vol. 41(C), pages 303-315.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fuentes González, Fabián & Webb, Janette & Sharmina, Maria & Hannon, Matthew & Braunholtz-Speight, Timothy & Pappas, Dimitrios, 2022. "Local energy businesses in the United Kingdom: Clusters and localism determinants based on financial ratios," Energy, Elsevier, vol. 239(PB).
    2. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Shahbaz, Muhammad & Vinh Vo, Xuan, 2021. "How energy transition and power consumption are related in Asian economies with different income levels?," Energy, Elsevier, vol. 237(C).
    3. Malek Al-Chalabi, 2023. "Targeted and Tangential Effects—A Novel Framework for Energy Research and Practitioners," Sustainability, MDPI, vol. 15(17), pages 1-12, August.
    4. Park, Seona & Yun, Sun-Jin & Cho, Kongjang, 2022. "Public dialogue as a collaborative planning process for offshore wind energy projects: Implications from a text analysis of a South Korean case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    5. Su, Dawei, 2022. "Comprehensive thermodynamic and exergoeconomic analyses and multi-objective optimization of a compressed air energy storage hybridized with a parabolic trough solar collectors," Energy, Elsevier, vol. 244(PA).
    6. Nikola Matak & Marko Mimica & Goran Krajačić, 2022. "Optimising the Cost of Reducing the CO 2 Emissions in Sustainable Energy and Climate Action Plans," Sustainability, MDPI, vol. 14(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Sveinbjörnsson, Dadi & Ben Amer-Allam, Sara & Hansen, Anders Bavnhøj & Algren, Loui & Pedersen, Allan Schrøder, 2017. "Energy supply modelling of a low-CO2 emitting energy system: Case study of a Danish municipality," Applied Energy, Elsevier, vol. 195(C), pages 922-941.
    4. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).
    5. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    6. Hofbauer, Leonhard & McDowall, Will & Pye, Steve, 2022. "Challenges and opportunities for energy system modelling to foster multi-level governance of energy transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Weinand, J.M. & McKenna, R. & Fichtner, W., 2019. "Developing a municipality typology for modelling decentralised energy systems," Utilities Policy, Elsevier, vol. 57(C), pages 75-96.
    8. Giorgio Baldinelli & Francesco Bianchi & Matteo Cornicchia & Francesco D’Alessandro & Gabriele De Micheli & Gaia Gifuni & Andrea Monsignori & Maria Ruggiero & Michele Cenci & Fabrizio Bonucci & France, 2015. "MuSAE: A European Project for the Diffusion of Energy and Environmental Planning in Small-Medium Sized Municipalities," Sustainability, MDPI, vol. 7(12), pages 1-16, December.
    9. Kleinebrahm, Max & Weinand, Jann Michael & Naber, Elias & McKenna, Russell & Ardone, Armin, 2023. "Analysing municipal energy system transformations in line with national greenhouse gas reduction strategies," Applied Energy, Elsevier, vol. 332(C).
    10. Comodi, Gabriele & Cioccolanti, Luca & Polonara, Fabio & Brandoni, Caterina, 2012. "Local authorities in the context of energy and climate policy," Energy Policy, Elsevier, vol. 51(C), pages 737-748.
    11. Engelken, Maximilian & Römer, Benedikt & Drescher, Marcus & Welpe, Isabell, 2016. "Transforming the energy system: Why municipalities strive for energy self-sufficiency," Energy Policy, Elsevier, vol. 98(C), pages 365-377.
    12. Weinand, Jann & Scheller, Fabian Johannes & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Working Paper Series in Production and Energy 41, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    13. McKenna, Russell & Merkel, Erik & Fichtner, Wolf, 2017. "Energy autonomy in residential buildings: A techno-economic model-based analysis of the scale effects," Applied Energy, Elsevier, vol. 189(C), pages 800-815.
    14. Busch, Henner & Ruggiero, Salvatore & Isakovic, Aljosa & Hansen, Teis, 2021. "Policy challenges to community energy in the EU: A systematic review of the scientific literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. McKenna, Russell & Merkel. Erik & Fichtner, Wolf, 2016. "Energy autonomy in residential buildings: a techno-economic model-based analysis of the scale effects," Working Paper Series in Production and Energy 12, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    16. Hecher, Maria & Vilsmaier, Ulli & Akhavan, Roya & Binder, Claudia R., 2016. "An integrative analysis of energy transitions in energy regions: A case study of ökoEnergieland in Austria," Ecological Economics, Elsevier, vol. 121(C), pages 40-53.
    17. Kühnbach, Matthias & Pisula, Stefan & Bekk, Anke & Weidlich, Anke, 2020. "How much energy autonomy can decentralised photovoltaic generation provide? A case study for Southern Germany," Applied Energy, Elsevier, vol. 280(C).
    18. Cosme Segador-Vegas & Justo García-Sanz-Calcedo & Daniel Encinas-Martín, 2018. "Determination of the Energy Behaviour in Municipalities with Fewer than 6000 Inhabitants in Badajoz (Spain)," Energies, MDPI, vol. 11(9), pages 1-16, August.
    19. Bouw, Kathelijne & Noorman, Klaas Jan & Wiekens, Carina J. & Faaij, André, 2021. "Local energy planning in the built environment: An analysis of model characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    20. Weinand, Jann & Ried, Sabrina & Kleinebrahm, Max & McKenna, Russell & Fichtner, Wolf, 2020. "Identification of potential off-grid municipalities with 100% renewable energy supply," Working Paper Series in Production and Energy 40, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:229:y:2021:i:c:s0360544221009798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.