IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v193y2020ics0360544219324326.html
   My bibliography  Save this article

The role of biomass gasification and methanisation in the decarbonisation strategies

Author

Listed:
  • Mantulet, Gabin
  • Bidaud, Adrien
  • Mima, Silvana

Abstract

The study explores future development of biomass uses across different climate policy scenarios and under different assumptions of biomass supply availability and technology performances. Broad bioenergy technology portfolios and generations provide flexibility to allocate bioenergy to supply a specific final energy mix and to remove carbon dioxide by combining bioenergy with carbon capture and sequestration (BECCS). The paper aim is to perform a detailed and focused analysis of the availability of biomass gasification and methanisation and the role of these green gas energy carriers in the decarbonisation strategies using a model based approach to see how some countries technology appropriation evolves through the XXIst century.

Suggested Citation

  • Mantulet, Gabin & Bidaud, Adrien & Mima, Silvana, 2020. "The role of biomass gasification and methanisation in the decarbonisation strategies," Energy, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:energy:v:193:y:2020:i:c:s0360544219324326
    DOI: 10.1016/j.energy.2019.116737
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219324326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacques Despres & Kimon Keramidas & Andreas Schmitz & Alban Kitous & Burkhard Schade & Ana Raquel Diaz-Vazquez & Silvana Mima & Hans Peter Russ & Tobias Wiesenthal, 2018. "POLES-JRC model documentation - Updated for 2018," JRC Research Reports JRC113757, Joint Research Centre.
    2. Chen, Qiu & Liu, Tianbiao, 2017. "Biogas system in rural China: Upgrading from decentralized to centralized?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 933-944.
    3. Nico Bauer & Steven K. Rose & Shinichiro Fujimori & Detlef P. van Vuuren & John Weyant & Marshall Wise & Yiyun Cui & Vassilis Daioglou & Matthew J. Gidden & Etsushi Kato & Alban Kitous & Florian Lebla, 2018. "Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison," Post-Print hal-01972038, HAL.
    4. Kimon Keramidas & Stephane Tchung-Ming & Ana Raquel Diaz-Vazquez & Matthias Weitzel & Toon Vandyck & Jacques Despres & Andreas Schmitz & Luis Rey Los Santos & Krzysztof Wojtowicz & Burkhard Schade & B, 2018. "Global Energy and Climate Outlook 2018: Sectoral mitigation options towards a low-emissions economy," JRC Research Reports JRC113446, Joint Research Centre.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lund, Henrik & Skov, Iva Ridjan & Thellufsen, Jakob Zinck & Sorknæs, Peter & Korberg, Andrei David & Chang, Miguel & Mathiesen, Brian Vad & Kany, Mikkel Strunge, 2022. "The role of sustainable bioenergy in a fully decarbonised society," Renewable Energy, Elsevier, vol. 196(C), pages 195-203.
    2. Naqvi, Salman Raza & Naqvi, Muhammad & Ammar Taqvi, Syed Ali & Iqbal, Farukh & Inayat, Abrar & Khoja, Asif Hussain & Mehran, Muhammad Taqi & Ayoub, Muhammad & Shahbaz, Muhammad & Saidina Amin, Nor Ais, 2021. "Agro-industrial residue gasification feasibility in captive power plants: A South-Asian case study," Energy, Elsevier, vol. 214(C).
    3. Hidalgo, D. & Martín-Marroquín, J.M., 2020. "Power-to-methane, coupling CO2 capture with fuel production: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Brenda H. M. Silveira & Hirdan K. M. Costa & Edmilson M. Santos, 2023. "Bioenergy with Carbon Capture and Storage (BECCS) in Brazil: A Review," Energies, MDPI, vol. 16(4), pages 1-18, February.
    5. Kaabinejadian, Amirreza & Maghsoudi, Peyman & Homayounpour, Mohammad Mehdi & Sadeghi, Sadegh & Bidabadi, Mehdi & Xu, Fei, 2020. "Mathematical modeling of multi-region premixed combustion of moist bamboo particles," Renewable Energy, Elsevier, vol. 162(C), pages 1618-1628.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Zhao, Xiqiang & Zhou, Xing & Wang, Guoxiu & Zhou, Ping & Wang, Wenlong & Song, Zhanlong, 2022. "Evaluating the effect of torrefaction on the pyrolysis of biomass and the biochar catalytic performance on dry reforming of methane," Renewable Energy, Elsevier, vol. 192(C), pages 313-325.
    3. Vassilis Daioglou & Matteo Muratori & Patrick Lamers & Shinichiro Fujimori & Alban Kitous & Alexandre C. Köberle & Nico Bauer & Martin Junginger & Etsushi Kato & Florian Leblanc & Silvana Mima & Marsh, 2020. "Implications of climate change mitigation strategies on international bioenergy trade," Climatic Change, Springer, vol. 163(3), pages 1639-1658, December.
    4. Wang, Jun & Xue, Qingwen & Guo, Ting & Mei, Zili & Long, Enshen & Wen, Qian & Huang, Wei & Luo, Tao & Huang, Ruyi, 2018. "A review on CFD simulating method for biogas fermentation material fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 64-73.
    5. Nikas, A. & Gambhir, A. & Trutnevyte, E. & Koasidis, K. & Lund, H. & Thellufsen, J.Z. & Mayer, D. & Zachmann, G. & Miguel, L.J. & Ferreras-Alonso, N. & Sognnaes, I. & Peters, G.P. & Colombo, E. & Howe, 2021. "Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe," Energy, Elsevier, vol. 215(PA).
    6. Zhang, Weishi & Xu, Ying & Wang, Can & Streets, David G., 2022. "Assessment of the driving factors of CO2 mitigation costs of household biogas systems in China: A LMDI decomposition with cost analysis model," Renewable Energy, Elsevier, vol. 181(C), pages 978-989.
    7. Dumortier, Jerome & Elobeid, Amani & Carriquiry, Miguel, 2022. "Light-duty vehicle fleet electrification in the United States and its effects on global agricultural markets," Ecological Economics, Elsevier, vol. 200(C).
    8. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    9. Böhringer, Christoph & Rosendahl, Knut Einar, 2022. "Europe beyond coal – An economic and climate impact assessment," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    10. Niu, Shuwen & Li, Zhen & Qiu, Xin & Dai, Runqi & Wang, Xiang & Qiang, Wenli & Hong, Zhenguo, 2019. "Measurement of effective energy consumption in China's rural household sector and policy implication," Energy Policy, Elsevier, vol. 128(C), pages 553-564.
    11. Yiyun Liu & Jun Wu & Jianjun Li & Jingjing Huang, 2023. "The Diffusion Rule of Demand-Oriented Biogas Supply in Distributed Renewable Energy System: An Evolutionary Game-Based Approach," Sustainability, MDPI, vol. 15(19), pages 1-16, September.
    12. Toon Vandyck & Kimon Keramidas & Stéphane Tchung-Ming & Matthias Weitzel & Rita Dingenen, 2020. "Quantifying air quality co-benefits of climate policy across sectors and regions," Climatic Change, Springer, vol. 163(3), pages 1501-1517, December.
    13. TCHUNG-MING Stephane & DIAZ VAZQUEZ Ana R. & KERAMIDAS Kimon, 2018. "Global Energy and Climate Outlook 2018: Greenhouse gas emissions and energy balances," JRC Research Reports JRC114840, Joint Research Centre.
    14. Liu, Hongzhao & Wang, Yuzhang & Yu, Tao & Liu, Hecong & Cai, Weiwei & Weng, Shilie, 2020. "Effect of carbon dioxide content in biogas on turbulent combustion in the combustor of micro gas turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 1299-1311.
    15. Xue, Shengrong & Zhang, Siqi & Wang, Ying & Wang, Yanbo & Song, Jinghui & Lyu, Xingang & Wang, Xiaojiao & Yang, Gaihe, 2022. "What can we learn from the experience of European countries in biomethane industry: Taking China as an example?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    16. Umed Temursho & Matthias Weitzel & Toon Vandyck, 2020. "Distributional impacts of reaching ambitious near-term climate targets across households with heterogeneous consumption patterns: A quantitative macro-micro assessment for the 2030 Climate Target Plan," JRC Research Reports JRC121765, Joint Research Centre.
    17. Yasmin, Nazia & Grundmann, Philipp, 2019. "Adoption and diffusion of renewable energy – The case of biogas as alternative fuel for cooking in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 255-264.
    18. Yanran Fu & Tao Luo & Zili Mei & Jiang Li & Kun Qiu & Yihong Ge, 2018. "Dry Anaerobic Digestion Technologies for Agricultural Straw and Acceptability in China," Sustainability, MDPI, vol. 10(12), pages 1-13, December.
    19. Pal, Ankit & Bhattacharjee, Subhadeep, 2020. "Effectuation of biogas based hybrid energy system for cost-effective decentralized application in small rural community," Energy, Elsevier, vol. 203(C).
    20. Kasinath, Archana & Fudala-Ksiazek, Sylwia & Szopinska, Malgorzata & Bylinski, Hubert & Artichowicz, Wojciech & Remiszewska-Skwarek, Anna & Luczkiewicz, Aneta, 2021. "Biomass in biogas production: Pretreatment and codigestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:193:y:2020:i:c:s0360544219324326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.