IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v151y2018icp297-308.html
   My bibliography  Save this article

Integrated tech-paradigm based innovative approach towards ecological coal mining

Author

Listed:
  • Xu, Jiuping
  • Gao, Wen
  • Xie, Heping
  • Dai, Jingqi
  • Lv, Chengwei
  • Li, Meihui

Abstract

Coal mining technology directly affects coal production quantity and quality, which in turn affects global energy supplies, especially in rapidly urbanizing, industrializing economies. In this research, a coal production technological diffusion mathematical model is proposed, the results from which indicated that while total coal production is expected to decline in the following decades, coal will continue to provide a sizable share of global prime energy to meet the expected energy demands. A general data analysis was conducted to fully understand coal mining technological paradigmatic development and future necessary improvements to ensure more efficient, environmentally-friendly coal production. It was found that the coal mining technological paradigm followed a three-stage trajectory; competition, diffusion, and shift; in accordance with the traditional technological paradigm S-curve, and underground coal gasification (UCG) related technologies were identified as the main development direction for coal mining technologies. An integrated energy exploitation approach for ecological coal mining was then designed to deal with current environmental and energy returns on investment problems, to improve performance, and to act as a foundation for future UCG technological developments. Some policy recommendations are given to guide the implementation of the proposed ecologically oriented integrated coal mining system.

Suggested Citation

  • Xu, Jiuping & Gao, Wen & Xie, Heping & Dai, Jingqi & Lv, Chengwei & Li, Meihui, 2018. "Integrated tech-paradigm based innovative approach towards ecological coal mining," Energy, Elsevier, vol. 151(C), pages 297-308.
  • Handle: RePEc:eee:energy:v:151:y:2018:i:c:p:297-308
    DOI: 10.1016/j.energy.2018.02.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218303189
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.02.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johnson T. S. Cheng & I-Ming Jiang & Yu-Hong Liu, 2015. "Technological Innovation, Product Life Cycle and Market Power: A Real Options Approach," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 93-113.
    2. Ron Adner & Rahul Kapoor, 2016. "Innovation ecosystems and the pace of substitution: Re-examining technology S-curves," Strategic Management Journal, Wiley Blackwell, vol. 37(4), pages 625-648, April.
    3. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    4. Kursun, Berrin & Bakshi, Bhavik R. & Mahata, Manoj & Martin, Jay F., 2015. "Life cycle and emergy based design of energy systems in developing countries: Centralized and localized options," Ecological Modelling, Elsevier, vol. 305(C), pages 40-53.
    5. Asif, M. & Muneer, T., 2007. "Energy supply, its demand and security issues for developed and emerging economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1388-1413, September.
    6. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    7. Khadse, Anil & Qayyumi, Mohammed & Mahajani, Sanjay & Aghalayam, Preeti, 2007. "Underground coal gasification: A new clean coal utilization technique for India," Energy, Elsevier, vol. 32(11), pages 2061-2071.
    8. Hall, Charles A.S. & Lambert, Jessica G. & Balogh, Stephen B., 2014. "EROI of different fuels and the implications for society," Energy Policy, Elsevier, vol. 64(C), pages 141-152.
    9. Tian, Yangge & Wen, Cheng & Hong, Song, 2008. "Global scientific production on GIS research by bibliometric analysis from 1997 to 2006," Journal of Informetrics, Elsevier, vol. 2(1), pages 65-74.
    10. Serge Shikher, 2014. "International production, technology diffusion, and trade," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 23(1), pages 111-154, February.
    11. Liliana B. Andonova, 2010. "Public-Private Partnerships for the Earth: Politics and Patterns of Hybrid Authority in the Multilateral System," Global Environmental Politics, MIT Press, vol. 10(2), pages 25-53, May.
    12. Connor, Linda H., 2016. "Energy futures, state planning policies and coal mine contests in rural New South Wales," Energy Policy, Elsevier, vol. 99(C), pages 233-241.
    13. Shen, Lei & Gao, Tian-ming & Cheng, Xin, 2012. "China's coal policy since 1979: A brief overview," Energy Policy, Elsevier, vol. 40(C), pages 274-281.
    14. Zhigao Liu & Yimei Yin & Weidong Liu & Michael Dunford, 2015. "Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 135-158, April.
    15. Farshad Madani, 2015. "‘Technology Mining’ bibliometrics analysis: applying network analysis and cluster analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 323-335, October.
    16. Jeff Tollefson & Richard Van Noorden, 2012. "Slow progress to cleaner coal," Nature, Nature, vol. 484(7393), pages 151-152, April.
    17. Imran, Muhammad & Kumar, Dileep & Kumar, Naresh & Qayyum, Abdul & Saeed, Ahmed & Bhatti, Muhammad Shamim, 2014. "Environmental concerns of underground coal gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 600-610.
    18. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    19. Osmo Kuusi & Martin Meyer, 2007. "Anticipating technological breakthroughs: Using bibliographic coupling to explore the nanotubes paradigm," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 759-777, March.
    20. Hall, Andrew & Scott, John Ashley & Shang, Helen, 2011. "Geothermal energy recovery from underground mines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 916-924, February.
    21. Hélène Dernis & Mariagrazia Squicciarini & Roberto Pinho, 2016. "Detecting the emergence of technologies and the evolution and co-development trajectories in science (DETECTS): a ‘burst’ analysis-based approach," The Journal of Technology Transfer, Springer, vol. 41(5), pages 930-960, October.
    22. Woocheol Kim & Gohar Feroz Khan & Jacob Wood & Muhammad Tariq Mahmood, 2016. "Employee Engagement for Sustainable Organizations: Keyword Analysis Using Social Network Analysis and Burst Detection Approach," Sustainability, MDPI, vol. 8(7), pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Izabela Jonek-Kowalska, 2018. "Method for Assessing the Development of Underground Hard Coal Mines on a Regional Basis: The Concept of Measurement and Research Results," Energies, MDPI, vol. 11(6), pages 1-23, May.
    2. Song, Jiajia & Deng, Jun & Zhao, Jingyu & Zhang, Yanni & Wang, Caiping & Shu, Chi-Min, 2021. "Critical particle size analysis of gas emission under high-temperature oxidation of weathered coal," Energy, Elsevier, vol. 214(C).
    3. Jayaraman, Kandasamy & Kök, Mustafa Versan & Gökalp, Iskender, 2020. "Combustion mechanism and model free kinetics of different origin coal samples: Thermal analysis approach," Energy, Elsevier, vol. 204(C).
    4. Zhao, Pengxiang & Zhuo, Risheng & Li, Shugang & Shu, Chi-Min & Jia, Yongyong & Lin, Haifei & Chang, Zechen & Ho, Chun-Hsing & Laiwang, Bin & Xiao, Peng, 2021. "Fractal characteristics of methane migration channels in inclined coal seams," Energy, Elsevier, vol. 225(C).
    5. Yang, Beibei & He, Mingming & Xiao, Zhanshan & Zhao, Jianbin & Zhang, Yonghao, 2023. "Effect of horizontal stress on fractal characteristics of rockburst fragments in coal mining," Energy, Elsevier, vol. 281(C).
    6. Peizhong Lu & Yuxuan Huang & Peng Jin & Shouguo Yang & Man Wang & Xiaochuan Wang, 2023. "Optimization of a Marker Gas for Analyzing and Predicting the Spontaneous Combustion Period of Coking Coal," Energies, MDPI, vol. 16(23), pages 1-19, November.
    7. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    8. Kumar, Rajeev Ranjan & Guha, Pritha & Chakraborty, Abhishek, 2022. "Comparative assessment and selection of electric vehicle diffusion models: A global outlook," Energy, Elsevier, vol. 238(PC).
    9. Tingjiang, Tan & Enyuan, Wang & Ke, Zhao & Changfang, Guo, 2023. "Research on assisting coal mine hazard investigation for accident prevention through text mining and deep learning," Resources Policy, Elsevier, vol. 85(PB).
    10. Jonek-Kowalska, Izabela, 2019. "Consolidation as a risk management method in the lifecycle of a mining company: A novel methodological approach and evidence from the coal industry in Poland," Resources Policy, Elsevier, vol. 60(C), pages 169-177.
    11. Nie, Wen & Cha, Xingpeng & Bao, Qiu & Peng, Huitian & Xu, Changwei & Zhang, Shaobo & Zhang, Xu & Ma, Qingxin & Guo, Cheng & Yi, Shixing & Jiang, Chenwang, 2023. "Study on dust pollution suppression of mine wind-assisted spray device based on orthogonal test and CFD simulation," Energy, Elsevier, vol. 263(PB).
    12. Gruenhagen, Jan Henrik & Parker, Rachel, 2020. "Factors driving or impeding the diffusion and adoption of innovation in mining: A systematic review of the literature," Resources Policy, Elsevier, vol. 65(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    2. Marco Vittorio Ecclesia & João Santos & Paul E. Brockway & Tiago Domingos, 2022. "A Comprehensive Societal Energy Return on Investment Study of Portugal Reveals a Low but Stable Value," Energies, MDPI, vol. 15(10), pages 1-22, May.
    3. Jackson, Andrew & Jackson, Tim, 2021. "Modelling energy transition risk: The impact of declining energy return on investment (EROI)," Ecological Economics, Elsevier, vol. 185(C).
    4. Luciano Celi, 2021. "Deriving EROI for Thirty Large Oil Companies Using the CO2 Proxy from 1999 to 2018," Biophysical Economics and Resource Quality, Springer, vol. 6(4), pages 1-12, December.
    5. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    6. Huang, Chen & Gu, Baihe & Chen, Yingchao & Tan, Xianchun & Feng, Lianyong, 2019. "Energy return on energy, carbon, and water investment in oil and gas resource extraction: Methods and applications to the Daqing and Shengli oilfields," Energy Policy, Elsevier, vol. 134(C).
    7. Louis Delannoy & Pierre-Yves Longaretti & David. J. Murphy & Emmanuel Prados, 2021. "Assessing Global Long-Term EROI of Gas: A Net-Energy Perspective on the Energy Transition," Energies, MDPI, vol. 14(16), pages 1-16, August.
    8. Walmsley, Timothy G. & Walmsley, Michael R.W. & Varbanov, Petar S. & Klemeš, Jiří J., 2018. "Energy Ratio analysis and accounting for renewable and non-renewable electricity generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 328-345.
    9. Aramendia, Emmanuel & Brockway, Paul E. & Pizzol, Massimo & Heun, Matthew K., 2021. "Moving from final to useful stage in energy-economy analysis: A critical assessment," Applied Energy, Elsevier, vol. 283(C).
    10. Bartłomiej Bajan & Joanna Łukasiewicz & Agnieszka Poczta-Wajda & Walenty Poczta, 2021. "Edible Energy Production and Energy Return on Investment—Long-Term Analysis of Global Changes," Energies, MDPI, vol. 14(4), pages 1-16, February.
    11. Victor Court, 2019. "An Estimation of Different Minimum Exergy Return Ratios Required for Society," Biophysical Economics and Resource Quality, Springer, vol. 4(3), pages 1-13, September.
    12. Adrien Fabre, 2018. "Evolution of EROIs of Electricity Until 2050: Estimation Using the Input-Output Model THEMIS," Policy Papers 2018.09, FAERE - French Association of Environmental and Resource Economists.
    13. Oosterom, Jan-Pieter & Hall, Charles A.S., 2022. "Enhancing the evaluation of Energy Investments by supplementing traditional discounted cash flow with Energy Return on Investment analysis," Energy Policy, Elsevier, vol. 168(C).
    14. John W. Day & Christopher F. D’Elia & Adrian R. H. Wiegman & Jeffrey S. Rutherford & Charles A. S. Hall & Robert R. Lane & David E. Dismukes, 2018. "The Energy Pillars of Society: Perverse Interactions of Human Resource Use, the Economy, and Environmental Degradation," Biophysical Economics and Resource Quality, Springer, vol. 3(1), pages 1-16, March.
    15. Melgar-Melgar, Rigo E. & Hall, Charles A.S., 2020. "Why ecological economics needs to return to its roots: The biophysical foundation of socio-economic systems," Ecological Economics, Elsevier, vol. 169(C).
    16. Luciano Celi & Claudio Della Volpe & Luca Pardi & Stefano Siboni, 2020. "Spruce budworm and oil price: a biophysical analogy," Papers 2004.14898, arXiv.org.
    17. Zhao, Yuntong & Du, Yushen, 2021. "Technical standard competition: An ecosystem-view analysis based on stochastic evolutionary game theory," Technology in Society, Elsevier, vol. 67(C).
    18. Charles Guay-Boutet, 2023. "Estimating the Disaggregated Standard EROI of Canadian Oil Sands Extracted via Open-pit Mining, 1997–2016," Biophysical Economics and Resource Quality, Springer, vol. 8(1), pages 1-21, March.
    19. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    20. Petros Gkotsis & Antonio Vezzani, 2016. "Technological diffusion as a recombinant process," JRC Working Papers on Corporate R&D and Innovation 2016-07, Joint Research Centre.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:151:y:2018:i:c:p:297-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.