IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v137y2017icp917-926.html
   My bibliography  Save this article

Environmental assessment of waste management scenarios with energy recovery using life cycle assessment and multi-criteria analysis

Author

Listed:
  • Milutinović, Biljana
  • Stefanović, Gordana
  • Đekić, Petar S.
  • Mijailović, Ivan
  • Tomić, Mladen

Abstract

Before design and implementation of waste management system, the sustainability assessment must be done, but specially must be considered their impact on the environment. Environmental impact should be considered throughout the life cycle of waste. In this paper combination of life cycle assessment and multi-criteria analysis, was applied to assess environmental impact of different waste management scenarios with energy recovery in City of Niš as a case study. In the first step, the Life Cycle Assessment is used to assess environmental impact of developed scenarios and to calculate values of impact categories (indicators). In the next step the Analytic Hierarchy Process is used to rank developed scenarios according to the goal: selection of the scenario with minimum negative environmental impact according to the indicators. Four scenarios were taken in to consideration: “business as usual” scenario i.e. landfilling without energy recovery, landfilling with biogas combustion to generate electricity and heat; incineration of waste with energy production, anaerobic digestion with biogas utilization for energy generation. The obtained results show that the Scenario with minimum negative environmental impact in the case study City of Niš is an anaerobic digestion with biogas utilization for energy generation.

Suggested Citation

  • Milutinović, Biljana & Stefanović, Gordana & Đekić, Petar S. & Mijailović, Ivan & Tomić, Mladen, 2017. "Environmental assessment of waste management scenarios with energy recovery using life cycle assessment and multi-criteria analysis," Energy, Elsevier, vol. 137(C), pages 917-926.
  • Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:917-926
    DOI: 10.1016/j.energy.2017.02.167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217303493
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.02.167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gunamantha, Made & Sarto,, 2012. "Life cycle assessment of municipal solid waste treatment to energy options: Case study of KARTAMANTUL region, Yogyakarta," Renewable Energy, Elsevier, vol. 41(C), pages 277-284.
    2. Bell, Michelle L. & Hobbs, Benjamin F. & Ellis, Hugh, 2003. "The use of multi-criteria decision-making methods in the integrated assessment of climate change: implications for IA practitioners," Socio-Economic Planning Sciences, Elsevier, vol. 37(4), pages 289-316, December.
    3. Cherubini, Francesco & Bargigli, Silvia & Ulgiati, Sergio, 2009. "Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration," Energy, Elsevier, vol. 34(12), pages 2116-2123.
    4. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2009. "Sensitivity analysis of technological, economic and sustainability evaluation of power plants using the analytic hierarchy process," Energy Policy, Elsevier, vol. 37(3), pages 788-798, March.
    5. Whiting, Andrew & Azapagic, Adisa, 2014. "Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion," Energy, Elsevier, vol. 70(C), pages 181-193.
    6. Corti, Andrea & Lombardi, Lidia, 2004. "End life tyres: Alternative final disposal processes compared by LCA," Energy, Elsevier, vol. 29(12), pages 2089-2108.
    7. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    8. Milutinović, Biljana & Stefanović, Gordana & Dassisti, Michele & Marković, Danijel & Vučković, Goran, 2014. "Multi-criteria analysis as a tool for sustainability assessment of a waste management model," Energy, Elsevier, vol. 74(C), pages 190-201.
    9. Tarantini, Mario & Loprieno, Arianna Dominici & Cucchi, Eleonora & Frenquellucci, Ferdinando, 2009. "Life Cycle Assessment of waste management systems in Italian industrial areas: Case study of 1st Macrolotto of Prato," Energy, Elsevier, vol. 34(5), pages 613-622.
    10. McManus, M.C., 2010. "Life cycle impacts of waste wood biomass heating systems: A case study of three UK based systems," Energy, Elsevier, vol. 35(10), pages 4064-4070.
    11. Talens Peiró, L. & Lombardi, L. & Villalba Méndez, G. & Gabarrell i Durany, X., 2010. "Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO)," Energy, Elsevier, vol. 35(2), pages 889-893.
    12. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2009. "Technological, economic and sustainability evaluation of power plants using the Analytic Hierarchy Process," Energy Policy, Elsevier, vol. 37(3), pages 778-787, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Maria Vetrova, 2021. "Closed Product Life Cycle as a Basis of the Circular Economy," GATR Journals jber198, Global Academy of Training and Research (GATR) Enterprise.
    3. Matthias Maldet & Daniel Schwabeneder & Georg Lettner & Christoph Loschan & Carlo Corinaldesi & Hans Auer, 2022. "Beyond Traditional Energy Sector Coupling: Conserving and Efficient Use of Local Resources," Sustainability, MDPI, vol. 14(12), pages 1-36, June.
    4. Smith, Matthew M. & Aber, John D., 2018. "Energy recovery from commercial-scale composting as a novel waste management strategy," Applied Energy, Elsevier, vol. 211(C), pages 194-199.
    5. Zhang, Yuwei & Zhang, Yingjie & Zhu, Hengxi & Zhou, Pengxiang & Liu, Shuai & Lei, Xiaoli & Li, Yanhong & Li, Bin & Ning, Ping, 2022. "Life cycle assessment of pollutants and emission reduction strategies based on the energy structure of the nonferrous metal industry in China," Energy, Elsevier, vol. 261(PA).
    6. Ahmad, Syaza I. & Ho, Wai Shin & Hassim, Mimi H. & Elagroudy, Sherien & Abdul Kohar, Rabiatul Adawiyyah & Bong, Cassendra Phun Chien & Hashim, Haslenda & Rashid, Roslina, 2020. "Development of quantitative SHE index for waste to energy technology selection," Energy, Elsevier, vol. 191(C).
    7. Rui Wang & Qing Xu & Chenyu He & Xinyi Liu & Zhenyu Feng & Luxiaohe Zhang & Jun Gao, 2023. "Analysis of Hazardous Waste Management Elements in Oil and Gas Enterprises Based on the Life-Cycle Management Concept," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    8. Henrieta Pavolová & Roman Lacko & Zuzana Hajduová & Zuzana Šimková & Martin Rovňák, 2020. "The Circular Model in Disposal with Municipal Waste. A Case Study of Slovakia," IJERPH, MDPI, vol. 17(6), pages 1-15, March.
    9. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”," AQR Working Papers 201801, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2018.
    10. Ruoso, Ana Cristina & Dalla Nora, Macklini & Siluk, Julio Cezar Mairesse & Ribeiro, José Luis Duarte, 2022. "The impact of landfill operation factors on improving biogas generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Evolutionary Computation for Macroeconomic Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 833-849, February.
    12. Georgios Banias & Maria Batsioula & Charisios Achillas & Sotiris I. Patsios & Konstantinos N. Kontogiannopoulos & Dionysis Bochtis & Nicolas Moussiopoulos, 2020. "A Life Cycle Analysis Approach for the Evaluation of Municipal Solid Waste Management Practices: The Case Study of the Region of Central Macedonia, Greece," Sustainability, MDPI, vol. 12(19), pages 1-17, October.
    13. Sandylove Afrane & Jeffrey Dankwa Ampah & Ephraim Bonah Agyekum & Prince Oppong Amoh & Abdulfatah Abdu Yusuf & Islam Md Rizwanul Fattah & Ebenezer Agbozo & Elmazeg Elgamli & Mokhtar Shouran & Guozhu M, 2022. "Integrated AHP-TOPSIS under a Fuzzy Environment for the Selection of Waste-To-Energy Technologies in Ghana: A Performance Analysis and Socio-Enviro-Economic Feasibility Study," IJERPH, MDPI, vol. 19(14), pages 1-31, July.
    14. Sarbassov, Yerbol & Venetis, Christos & Aiymbetov, Berik & Abylkhani, Bexultan & Yagofarova, Almira & Tokmurzin, Diyar & Anthony, Edward J. & Inglezakis, Vassilis J., 2020. "Municipal solid waste management and greenhouse gas emissions at international airports: A case study of Astana International Airport," Journal of Air Transport Management, Elsevier, vol. 85(C).
    15. Christos Vlachokostas, 2020. "Closing the Loop Between Energy Production and Waste Management: A Conceptual Approach Towards Sustainable Development," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    16. Torkayesh, Ali Ebadi & Rajaeifar, Mohammad Ali & Rostom, Madona & Malmir, Behnam & Yazdani, Morteza & Suh, Sangwon & Heidrich, Oliver, 2022. "Integrating life cycle assessment and multi criteria decision making for sustainable waste management: Key issues and recommendations for future studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Imran & Kabir, Zobaidul, 2020. "Waste-to-energy generation technologies and the developing economies: A multi-criteria analysis for sustainability assessment," Renewable Energy, Elsevier, vol. 150(C), pages 320-333.
    2. Salem Nechi & Belaid Aouni & Zouhair Mrabet, 2020. "Managing sustainable development through goal programming model and satisfaction functions," Annals of Operations Research, Springer, vol. 293(2), pages 747-766, October.
    3. Levi VERMOTE & Cathy MACHARIS & Koen PUTMAN, 2014. "pRAGMATIC SUSTAINABILITY ASSESSMENT OF 30-KM/H POLICY MEASURES: THE BRUSSELS’ PENTAGON CASE," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 9(3), pages 18-54, August.
    4. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Including management and security of supply constraints for designing stand-alone electrification systems in developing countries," Renewable Energy, Elsevier, vol. 80(C), pages 359-369.
    5. Koo, Jamin & Park, Kyungtae & Shin, Dongil & Yoon, En Sup, 2011. "Economic evaluation of renewable energy systems under varying scenarios and its implications to Korea's renewable energy plan," Applied Energy, Elsevier, vol. 88(6), pages 2254-2260, June.
    6. Ishizaka, Alessio & Siraj, Sajid & Nemery, Philippe, 2016. "Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool," Energy, Elsevier, vol. 95(C), pages 602-611.
    7. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    8. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    9. Tsita, Katerina G. & Pilavachi, Petros A., 2012. "Evaluation of alternative fuels for the Greek road transport sector using the analytic hierarchy process," Energy Policy, Elsevier, vol. 48(C), pages 677-686.
    10. Farboud Khatami & Erfan Goharian, 2022. "Beyond Profitable Shifts to Green Energies, towards Energy Sustainability," Sustainability, MDPI, vol. 14(8), pages 1-28, April.
    11. Milad Kolagar & Seyed Mohammad Hassan Hosseini & Ramin Felegari & Parviz Fattahi, 2020. "Policy-making for renewable energy sources in search of sustainable development: a hybrid DEA-FBWM approach," Environment Systems and Decisions, Springer, vol. 40(4), pages 485-509, December.
    12. Milutinović, Biljana & Stefanović, Gordana & Dassisti, Michele & Marković, Danijel & Vučković, Goran, 2014. "Multi-criteria analysis as a tool for sustainability assessment of a waste management model," Energy, Elsevier, vol. 74(C), pages 190-201.
    13. Shen, Yung-Chi & Chou, Chiyang James & Lin, Grace T.R., 2011. "The portfolio of renewable energy sources for achieving the three E policy goals," Energy, Elsevier, vol. 36(5), pages 2589-2598.
    14. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    15. Sani Habibu & Aliyu Bilkisu Adamu & Nuhu Siddique R., 2021. "Assessing Renewable Energy Practice in Turaki Ali House Kaduna-Nigeria," Real Estate Management and Valuation, Sciendo, vol. 29(4), pages 85-96, December.
    16. Büyüközkan, Gülçin & Güleryüz, Sezin, 2016. "An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey," International Journal of Production Economics, Elsevier, vol. 182(C), pages 435-448.
    17. Hernandez-Perdomo, Elvis A. & Mun, Johnathan & Rocco S., Claudio M., 2017. "Active management in state-owned energy companies: Integrating a real options approach into multicriteria analysis to make companies sustainable," Applied Energy, Elsevier, vol. 195(C), pages 487-502.
    18. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Giannoulis, E.D. & Haralambopoulos, D.A., 2011. "Distributed Generation in an isolated grid: Methodology of case study for Lesvos - Greece," Applied Energy, Elsevier, vol. 88(7), pages 2530-2540, July.
    20. B. Domenech & L. Ferrer-Martí & R. Pastor, 2022. "Multicriteria analysis of renewable-based electrification projects in developing countries," Annals of Operations Research, Springer, vol. 312(2), pages 1375-1401, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:137:y:2017:i:c:p:917-926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.