IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v96y2016icp179-192.html
   My bibliography  Save this article

Structural, geographic, and social factors in urban building energy use: Analysis of aggregated account-level consumption data in a megacity

Author

Listed:
  • Porse, Erik
  • Derenski, Joshua
  • Gustafson, Hannah
  • Elizabeth, Zoe
  • Pincetl, Stephanie

Abstract

Residential and commercial buildings comprise approximately forty percent of total energy consumption and carbon dioxide emissions in the U.S. Yet, while California spends $1.5 billion annually on energy efficiency programs, limited research has explored how building energy consumption varies within cities, including the social and structural factors that influence electricity and natural gas use. We present results from an analysis of aggregated account-level utility billing data for energy consumption across the over two million properties in Los Angeles County. Results show that consumption in L.A. County varies widely with geography, income, building characteristics, and climate. Several higher-income areas have greater total energy use per building even in cooler climates, while many lower-income regions rank higher for energy use per square-foot. Energy consumption also correlates with building age, which varies widely throughout the region. Our results demonstrate the many complex and interrelated factors that influence urban energy use. While billing data is critical for devising energy efficiency programs that actually realize estimated savings and promote more sustainable cities, opening access to such data presents significant challenges for protecting personal privacy. The presented approach is adaptable and scalable to cities seeking to develop data-driven policies to reduce building energy use.

Suggested Citation

  • Porse, Erik & Derenski, Joshua & Gustafson, Hannah & Elizabeth, Zoe & Pincetl, Stephanie, 2016. "Structural, geographic, and social factors in urban building energy use: Analysis of aggregated account-level consumption data in a megacity," Energy Policy, Elsevier, vol. 96(C), pages 179-192.
  • Handle: RePEc:eee:enepol:v:96:y:2016:i:c:p:179-192
    DOI: 10.1016/j.enpol.2016.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516302853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brownsword, R.A. & Fleming, P.D. & Powell, J.C. & Pearsall, N., 2005. "Sustainable cities - modelling urban energy supply and demand," Applied Energy, Elsevier, vol. 82(2), pages 167-180, October.
    2. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    3. Ritchie, J R Brent & McDougall, Gordon H G & Claxton, John D, 1981. "Complexities of Household Energy Consumption and Conservation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 8(3), pages 233-242, December.
    4. Mullaly, Cathy, 1998. "Home energy use behaviour: a necessary component of successful local government home energy conservation (LGHEC) programs," Energy Policy, Elsevier, vol. 26(14), pages 1041-1052, December.
    5. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    6. Geller, Howard & Harrington, Philip & Rosenfeld, Arthur H. & Tanishima, Satoshi & Unander, Fridtjof, 2006. "Polices for increasing energy efficiency: Thirty years of experience in OECD countries," Energy Policy, Elsevier, vol. 34(5), pages 556-573, March.
    7. Sadineni, Suresh B. & France, Todd M. & Boehm, Robert F., 2011. "Economic feasibility of energy efficiency measures in residential buildings," Renewable Energy, Elsevier, vol. 36(11), pages 2925-2931.
    8. Brown, Richard E. & Koomey, Jonathan G., 2003. "Electricity use in California: past trends and present usage patterns," Energy Policy, Elsevier, vol. 31(9), pages 849-864, July.
    9. Peter C. Reiss & Matthew W. White, 2005. "Household Electricity Demand, Revisited," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 853-883.
    10. Janet L. Reyna & Mikhail V. Chester, 2015. "The Growth of Urban Building Stock: Unintended Lock-in and Embedded Environmental Effects," Journal of Industrial Ecology, Yale University, vol. 19(4), pages 524-537, August.
    11. Oikonomou, V. & Becchis, F. & Steg, L. & Russolillo, D., 2009. "Energy saving and energy efficiency concepts for policy making," Energy Policy, Elsevier, vol. 37(11), pages 4787-4796, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Zhang, Yuhang & Zhang, Yi & Yi Zhang, & Zhang, Chengxu, 2022. "Effect of physical, environmental, and social factors on prediction of building energy consumption for public buildings based on real-world big data," Energy, Elsevier, vol. 261(PB).
    3. Feng, Wei & Zhang, Qianning & Ji, Hui & Wang, Ran & Zhou, Nan & Ye, Qing & Hao, Bin & Li, Yutong & Luo, Duo & Lau, Stephen Siu Yu, 2019. "A review of net zero energy buildings in hot and humid climates: Experience learned from 34 case study buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Xu, Guangyue & Wang, Weimin, 2020. "China’s energy consumption in construction and building sectors: An outlook to 2100," Energy, Elsevier, vol. 195(C).
    5. Lai, Xiaodong & Liu, Jixian & Shi, Qian & Georgiev, Georgi & Wu, Guangdong, 2017. "Driving forces for low carbon technology innovation in the building industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 299-315.
    6. Ruddell, Benjamin L. & Cheng, Dan & Fournier, Eric Daniel & Pincetl, Stephanie & Potter, Caryn & Rushforth, Richard, 2020. "Guidance on the usability-privacy tradeoff for utility customer data aggregation," Utilities Policy, Elsevier, vol. 67(C).
    7. Fournier, Eric D. & Federico, Felicia & Porse, Erik & Pincetl, Stephanie, 2019. "Effects of building size growth on residential energy efficiency and conservation in California," Applied Energy, Elsevier, vol. 240(C), pages 446-452.
    8. Anastasia Papangelou & Jean‐Baptiste Bahers & Lynda Aissani, 2023. "Drivers of urban metabolism: Toward a framework for urban transformations," Journal of Industrial Ecology, Yale University, vol. 27(5), pages 1389-1405, October.
    9. Yael Nidam & Ali Irani & Jamie Bemis & Christoph Reinhart, 2023. "Census-based urban building energy modeling to evaluate the effectiveness of retrofit programs," Environment and Planning B, , vol. 50(9), pages 2394-2406, November.
    10. Porse, Erik & Fournier, Eric & Cheng, Dan & Hirashiki, Claire & Gustafson, Hannah & Federico, Felicia & Pincetl, Stephanie, 2020. "Net solar generation potential from urban rooftops in Los Angeles," Energy Policy, Elsevier, vol. 142(C).
    11. Stephanie Pincetl & Mikhail Chester & David Eisenman, 2016. "Urban Heat Stress Vulnerability in the U.S. Southwest: The Role of Sociotechnical Systems," Sustainability, MDPI, vol. 8(9), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocco, Matteo V. & Forcada Ferrer, Rafael J. & Colombo, Emanuela, 2018. "Understanding the energy metabolism of World economies through the joint use of Production- and Consumption-based energy accountings," Applied Energy, Elsevier, vol. 211(C), pages 590-603.
    2. Eva Valeri & Amanda Stathopoulos & Edoardo Marcucci, 2012. "Energy Efficiency In The Transport Sector: Policy Evolution In Some European Countries," Working Papers 0312, CREI Università degli Studi Roma Tre, revised 2012.
    3. Copiello, Sergio, 2017. "Building energy efficiency: A research branch made of paradoxes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1064-1076.
    4. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2020. "A review of optimal energy policy instruments on industrial energy efficiency programs, rebound effects, and government policies," Energy Policy, Elsevier, vol. 139(C).
    5. Pedro Linares & Xavier Labandeira, 2010. "Energy Efficiency: Economics And Policy," Journal of Economic Surveys, Wiley Blackwell, vol. 24(3), pages 573-592, July.
    6. Estiri, Hossein & Zagheni, Emilio, 2018. "Evaluating the Age-Energy Consumption Profile in Residential Buildings," SocArXiv yqkva, Center for Open Science.
    7. Jia, Jun-Jun & Ni, Jinlan & Wei, Chu, 2023. "Residential responses to service-specific electricity demand: Case of China," China Economic Review, Elsevier, vol. 78(C).
    8. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential consumption of gas and electricity in the U.S.: The role of prices and income," Energy Economics, Elsevier, vol. 33(5), pages 870-881, September.
    9. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    10. Su, Yu-Wen, 2019. "Residential electricity demand in Taiwan: Consumption behavior and rebound effect," Energy Policy, Elsevier, vol. 124(C), pages 36-45.
    11. Wyatt, Peter, 2013. "A dwelling-level investigation into the physical and socio-economic drivers of domestic energy consumption in England," Energy Policy, Elsevier, vol. 60(C), pages 540-549.
    12. Barker, Terry & Ekins, Paul & Foxon, Tim, 2007. "Macroeconomic effects of efficiency policies for energy-intensive industries: The case of the UK Climate Change Agreements, 2000-2010," Energy Economics, Elsevier, vol. 29(4), pages 760-778, July.
    13. Spandagos, Constantine & Yarime, Masaru & Baark, Erik & Ng, Tze Ling, 2020. "“Triple Target” policy framework to influence household energy behavior: Satisfy, strengthen, include," Applied Energy, Elsevier, vol. 269(C).
    14. Gasparatos, Alexandros & Gadda, Tatiana, 2009. "Environmental support, energy security and economic growth in Japan," Energy Policy, Elsevier, vol. 37(10), pages 4038-4048, October.
    15. Coccia, Mario, 2010. "Energy metrics for driving competitiveness of countries: Energy weakness magnitude, GDP per barrel and barrels per capita," Energy Policy, Elsevier, vol. 38(3), pages 1330-1339, March.
    16. Anna Risch & Claire Salmon, 2017. "What matters in residential energy consumption: evidence from France," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 40(1/2), pages 79-116.
    17. Rackes, Adams & Melo, Ana Paula & Lamberts, Roberto, 2016. "Naturally comfortable and sustainable: Informed design guidance and performance labeling for passive commercial buildings in hot climates," Applied Energy, Elsevier, vol. 174(C), pages 256-274.
    18. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    19. Intaek Yoon & YeonSang Lee & Sohyun Kate Yoon, 2017. "An empirical analysis of energy efficiency measures applicable to cities, regions, and local governments, based on the case of South Korea’s local energy saving program," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 863-878, August.
    20. Bertoldi, Paolo & Rezessy, Silvia & Oikonomou, Vlasis, 2013. "Rewarding energy savings rather than energy efficiency: Exploring the concept of a feed-in tariff for energy savings," Energy Policy, Elsevier, vol. 56(C), pages 526-535.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:96:y:2016:i:c:p:179-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.