IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipbs0360544222021715.html
   My bibliography  Save this article

Effect of physical, environmental, and social factors on prediction of building energy consumption for public buildings based on real-world big data

Author

Listed:
  • Zhang, Yuhang
  • Zhang, Yi
  • Yi Zhang,
  • Zhang, Chengxu

Abstract

In practical operations, various static and dynamic parameters affect the prediction of building energy. In this study, seven modes were constructed based on the Extra-Trees algorithm to investigate the impacts of 19 factors involving physical, environmental, and social aspects on the specific energy consumption. The analysis is supported by data obtained from 110 public buildings over one year in Shenzhen, China. The results indicate that considering more factors significantly improves the prediction accuracy. Factor importance analysis shows that building type is the most significant factor, followed by ambient temperature, month, structure, floor area, and rent price. The external wall material is the least significant factor, followed by the type of heating system and subdistrict population. At least the top 8 most important factors must be provided to maintain an accuracy above 80%. Furthermore, the sensitivity analysis indicates that the SECs of comprehensive and office buildings demonstrate opposite variation trends to floor area; for rent price and distance from central business district, the SECs of comprehensive building show inverse and positive change trends, respectively, but the SECs of office remain almost unchanged. In addition, buildings with internal insulation can lead to more SEC in such climate.

Suggested Citation

  • Zhang, Yuhang & Zhang, Yi & Yi Zhang, & Zhang, Chengxu, 2022. "Effect of physical, environmental, and social factors on prediction of building energy consumption for public buildings based on real-world big data," Energy, Elsevier, vol. 261(PB).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021715
    DOI: 10.1016/j.energy.2022.125286
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222021715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125286?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Porse, Erik & Derenski, Joshua & Gustafson, Hannah & Elizabeth, Zoe & Pincetl, Stephanie, 2016. "Structural, geographic, and social factors in urban building energy use: Analysis of aggregated account-level consumption data in a megacity," Energy Policy, Elsevier, vol. 96(C), pages 179-192.
    2. Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
    3. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    4. Huang, Jianhua & Gurney, Kevin Robert, 2016. "The variation of climate change impact on building energy consumption to building type and spatiotemporal scale," Energy, Elsevier, vol. 111(C), pages 137-153.
    5. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
    6. Delzendeh, Elham & Wu, Song & Lee, Angela & Zhou, Ying, 2017. "The impact of occupants’ behaviours on building energy analysis: A research review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1061-1071.
    7. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    8. Zhong, Hai & Wang, Jiajun & Jia, Hongjie & Mu, Yunfei & Lv, Shilei, 2019. "Vector field-based support vector regression for building energy consumption prediction," Applied Energy, Elsevier, vol. 242(C), pages 403-414.
    9. Chengdong Li & Zixiang Ding & Dongbin Zhao & Jianqiang Yi & Guiqing Zhang, 2017. "Building Energy Consumption Prediction: An Extreme Deep Learning Approach," Energies, MDPI, vol. 10(10), pages 1-20, October.
    10. Hong, Tianzhen & Li, Cheng & Yan, Da, 2015. "Updates to the China Design Standard for Energy Efficiency in public buildings," Energy Policy, Elsevier, vol. 87(C), pages 187-198.
    11. Li, Pengshun & Zhang, Yi & Zhang, Yi & Zhang, Kai & Jiang, Mengyan, 2021. "The effects of dynamic traffic conditions, route characteristics and environmental conditions on trip-based electricity consumption prediction of electric bus," Energy, Elsevier, vol. 218(C).
    12. Cai, Mengmeng & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques," Applied Energy, Elsevier, vol. 236(C), pages 1078-1088.
    13. Ali, Usman & Shamsi, Mohammad Haris & Bohacek, Mark & Purcell, Karl & Hoare, Cathal & Mangina, Eleni & O’Donnell, James, 2020. "A data-driven approach for multi-scale GIS-based building energy modeling for analysis, planning and support decision making," Applied Energy, Elsevier, vol. 279(C).
    14. Tian, Wei & Liu, Yunliang & Heo, Yeonsook & Yan, Da & Li, Zhanyong & An, Jingjing & Yang, Song, 2016. "Relative importance of factors influencing building energy in urban environment," Energy, Elsevier, vol. 111(C), pages 237-250.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Tong & Zhang, Yajing & Shi, Longyu & Feng, Yunshuang & Ke, Xinjue & Zhang, Chengliang, 2023. "A comprehensive evaluation framework of energy and resources consumption of public buildings: Case study, People's Bank of China," Applied Energy, Elsevier, vol. 351(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Sun, Jian & Liu, Gang & Sun, Boyang & Xiao, Gang, 2021. "Light-stacking strengthened fusion based building energy consumption prediction framework via variable weight feature selection," Applied Energy, Elsevier, vol. 303(C).
    3. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
    4. Tran, Duc-Hoc & Luong, Duc-Long & Chou, Jui-Sheng, 2020. "Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings," Energy, Elsevier, vol. 191(C).
    5. Jason Runge & Radu Zmeureanu, 2019. "Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review," Energies, MDPI, vol. 12(17), pages 1-27, August.
    6. Fan, Cheng & Sun, Yongjun & Xiao, Fu & Ma, Jie & Lee, Dasheng & Wang, Jiayuan & Tseng, Yen Chieh, 2020. "Statistical investigations of transfer learning-based methodology for short-term building energy predictions," Applied Energy, Elsevier, vol. 262(C).
    7. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    8. Zhang, Yunfei & Zhou, Zhihua & Liu, Junwei & Yuan, Jianjuan, 2022. "Data augmentation for improving heating load prediction of heating substation based on TimeGAN," Energy, Elsevier, vol. 260(C).
    9. Abdurahman Alrobaie & Moncef Krarti, 2022. "A Review of Data-Driven Approaches for Measurement and Verification Analysis of Building Energy Retrofits," Energies, MDPI, vol. 15(21), pages 1-30, October.
    10. Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
    11. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Somu, Nivethitha & M R, Gauthama Raman & Ramamritham, Krithi, 2020. "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, Elsevier, vol. 261(C).
    13. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    14. Gao, Lei & Liu, Tianyuan & Cao, Tao & Hwang, Yunho & Radermacher, Reinhard, 2021. "Comparing deep learning models for multi energy vectors prediction on multiple types of building," Applied Energy, Elsevier, vol. 301(C).
    15. Yang, Xiu'e & Liu, Shuli & Zou, Yuliang & Ji, Wenjie & Zhang, Qunli & Ahmed, Abdullahi & Han, Xiaojing & Shen, Yongliang & Zhang, Shaoliang, 2022. "Energy-saving potential prediction models for large-scale building: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    16. Pedone, Livio & Molaioni, Filippo & Vallati, Andrea & Pampanin, Stefano, 2023. "Energy refurbishment planning of Italian school buildings using data-driven predictive models," Applied Energy, Elsevier, vol. 350(C).
    17. Xu, Yuanjin & Li, Fei & Asgari, Armin, 2022. "Prediction and optimization of heating and cooling loads in a residential building based on multi-layer perceptron neural network and different optimization algorithms," Energy, Elsevier, vol. 240(C).
    18. Hwang, Jun Kwon & Yun, Geun Young & Lee, Sukho & Seo, Hyeongjoon & Santamouris, Mat, 2020. "Using deep learning approaches with variable selection process to predict the energy performance of a heating and cooling system," Renewable Energy, Elsevier, vol. 149(C), pages 1227-1245.
    19. Ding, Zhikun & Chen, Weilin & Hu, Ting & Xu, Xiaoxiao, 2021. "Evolutionary double attention-based long short-term memory model for building energy prediction: Case study of a green building," Applied Energy, Elsevier, vol. 288(C).
    20. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.