IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i1p23-39.html
   My bibliography  Save this article

Levelised costs of Wave and Tidal energy in the UK: Cost competitiveness and the importance of "banded" Renewables Obligation Certificates

Author

Listed:
  • Allan, Grant
  • Gilmartin, Michelle
  • McGregor, Peter
  • Swales, Kim

Abstract

In this paper, publicly available cost data are used to calculate the private levelised costs of two marine energy technologies for UK electricity generation: Wave and Tidal Stream power. These estimates are compared to those for ten other electricity generation technologies whose costs were identified by the UK Government (DTI, 2006). Under plausible assumptions for costs and performance, point estimates of the levelised costs of Wave and Tidal Stream generation are £190 and £81/MWh, respectively. Sensitivity analysis shows how these relative private levelised costs calculations are affected by variation in key parameters, specifically the assumed capital costs, fuel costs and the discount rate. We also consider the impact of the introduction of technology-differentiated financial support for renewable energy on the cost competitiveness of Wave and Tidal Stream power. Further, we compare the impact of the current UK government support level to the more generous degree of assistance for marine technologies that is proposed by the Scottish government.

Suggested Citation

  • Allan, Grant & Gilmartin, Michelle & McGregor, Peter & Swales, Kim, 2011. "Levelised costs of Wave and Tidal energy in the UK: Cost competitiveness and the importance of "banded" Renewables Obligation Certificates," Energy Policy, Elsevier, vol. 39(1), pages 23-39, January.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:1:p:23-39
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00644-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    2. Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
    3. Allan, Grant J. & Bryden, Ian & McGregor, Peter G. & Stallard, Tim & Kim Swales, J. & Turner, Karen & Wallace, Robin, 2008. "Concurrent and legacy economic and environmental impacts from establishing a marine energy sector in Scotland," Energy Policy, Elsevier, vol. 36(7), pages 2734-2753, July.
    4. Styles, David & Jones, Michael B., 2007. "Current and future financial competitiveness of electricity and heat from energy crops: A case study from Ireland," Energy Policy, Elsevier, vol. 35(8), pages 4355-4367, August.
    5. Neij, Lena, 1997. "Use of experience curves to analyse the prospects for diffusion and adoption of renewable energy technology," Energy Policy, Elsevier, vol. 25(13), pages 1099-1107, November.
    6. Roth, Ian F. & Ambs, Lawrence L., 2004. "Incorporating externalities into a full cost approach to electric power generation life-cycle costing," Energy, Elsevier, vol. 29(12), pages 2125-2144.
    7. Sinden, Graham, 2007. "Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand," Energy Policy, Elsevier, vol. 35(1), pages 112-127, January.
    8. Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
    9. Neij, L, 1999. "Cost dynamics of wind power," Energy, Elsevier, vol. 24(5), pages 375-389.
    10. Olsen, Jan Abel, 1993. "On what basis should health be discounted?," Journal of Health Economics, Elsevier, vol. 12(1), pages 39-53, April.
    11. Clarke, J.A. & Connor, G. & Grant, A.D. & Johnstone, C.M., 2006. "Regulating the output characteristics of tidal current power stations to facilitate better base load matching over the lunar cycle," Renewable Energy, Elsevier, vol. 31(2), pages 173-180.
    12. Stallard, T. & Rothschild, R. & Aggidis, G.A., 2008. "A comparative approach to the economic modelling of a large-scale wave power scheme," European Journal of Operational Research, Elsevier, vol. 185(2), pages 884-898, March.
    13. Jeong, Suk-Jae & Kim, Kyung-Sup & Park, Jin-Won & Lim, Dong-soon & Lee, Seung-moon, 2008. "Economic comparison between coal-fired and liquefied natural gas combined cycle power plants considering carbon tax: Korean case," Energy, Elsevier, vol. 33(8), pages 1320-1330.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    2. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    3. Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    4. Bolinger, Mark & Wiser, Ryan, 2009. "Wind power price trends in the United States: Struggling to remain competitive in the face of strong growth," Energy Policy, Elsevier, vol. 37(3), pages 1061-1071, March.
    5. Yu, Yang & Li, Hong & Che, Yuyuan & Zheng, Qiongjie, 2017. "The price evolution of wind turbines in China: A study based on the modified multi-factor learning curve," Renewable Energy, Elsevier, vol. 103(C), pages 522-536.
    6. Kumbaroglu, Gürkan & Madlener, Reinhard & Demirel, Mustafa, 2008. "A real options evaluation model for the diffusion prospects of new renewable power generation technologies," Energy Economics, Elsevier, vol. 30(4), pages 1882-1908, July.
    7. Dalton, Gordon & Allan, Grant & Beaumont, Nicola & Georgakaki, Aliki & Hacking, Nick & Hooper, Tara & Kerr, Sandy & O’Hagan, Anne Marie & Reilly, Kieran & Ricci, Pierpaolo & Sheng, Wanan & Stallard, T, 2015. "Economic and socio-economic assessment methods for ocean renewable energy: Public and private perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 850-878.
    8. Kahouli-Brahmi, Sondes, 2009. "Testing for the presence of some features of increasing returns to adoption factors in energy system dynamics: An analysis via the learning curve approach," Ecological Economics, Elsevier, vol. 68(4), pages 1195-1212, February.
    9. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
    10. Kahouli, Sondès, 2011. "Effects of technological learning and uranium price on nuclear cost: Preliminary insights from a multiple factors learning curve and uranium market modeling," Energy Economics, Elsevier, vol. 33(5), pages 840-852, September.
    11. Reichenbach, Johanna & Requate, Till, 2012. "Subsidies for renewable energies in the presence of learning effects and market power," Resource and Energy Economics, Elsevier, vol. 34(2), pages 236-254.
    12. Clas‐Otto Wene, 2016. "Future energy system development depends on past learning opportunities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(1), pages 16-32, January.
    13. Yan Xu & Jiahai Yuan & Jianxiu Wang, 2017. "Learning of Power Technologies in China: Staged Dynamic Two-Factor Modeling and Empirical Evidence," Sustainability, MDPI, vol. 9(5), pages 1-14, May.
    14. Candelise, Chiara & Winskel, Mark & Gross, Robert J.K., 2013. "The dynamics of solar PV costs and prices as a challenge for technology forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 96-107.
    15. Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.
    16. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    17. Papineau, Maya, 2006. "An economic perspective on experience curves and dynamic economies in renewable energy technologies," Energy Policy, Elsevier, vol. 34(4), pages 422-432, March.
    18. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
    19. Lehmann, Paul, 2009. "Climate policies with pollution externalities and learning spillovers," UFZ Discussion Papers 10/2009, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    20. Ibenholt, Karin, 2002. "Explaining learning curves for wind power," Energy Policy, Elsevier, vol. 30(13), pages 1181-1189, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:1:p:23-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.