IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v33y2008i8p1320-1330.html
   My bibliography  Save this article

Economic comparison between coal-fired and liquefied natural gas combined cycle power plants considering carbon tax: Korean case

Author

Listed:
  • Jeong, Suk-Jae
  • Kim, Kyung-Sup
  • Park, Jin-Won
  • Lim, Dong-soon
  • Lee, Seung-moon

Abstract

Economic growth is main cause of environmental pollution and has been identified as a big threat to sustainable development. Considering the enormous role of electricity in the national economy, it is essential to study the effect of environmental regulations on the electricity sector. This paper aims at making an economic analysis of Korea's power plant utilities by comparing electricity generation costs from coal-fired power plants and liquefied natural gas (LNG) combined cycle power plants with environmental consideration. In this study, the levelized generation cost method (LGCM) is used for comparing economic analysis of power plant utilities. Among the many pollutants discharged during electricity generation, this study principally deals with control costs related only to CO2 and NO2, since the control costs of SO2 and total suspended particulates (TSP) are already included in the construction cost of utilities. The cost of generating electricity in a coal-fired power plant is compared with such cost in a LNG combined cycle power plant. Moreover, a sensitivity analysis with computer simulation is performed according to fuel price, interest rates and carbon tax. In each case, these results can help in deciding which utility is economically justified in the circumstances of environmental regulations.

Suggested Citation

  • Jeong, Suk-Jae & Kim, Kyung-Sup & Park, Jin-Won & Lim, Dong-soon & Lee, Seung-moon, 2008. "Economic comparison between coal-fired and liquefied natural gas combined cycle power plants considering carbon tax: Korean case," Energy, Elsevier, vol. 33(8), pages 1320-1330.
  • Handle: RePEc:eee:energy:v:33:y:2008:i:8:p:1320-1330
    DOI: 10.1016/j.energy.2008.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544208000650
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2008.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shin, Ho-Chul & Park, Jin-Won & Kim, Ho-Seok & Shin, Eui-Soon, 2005. "Environmental and economic assessment of landfill gas electricity generation in Korea using LEAP model," Energy Policy, Elsevier, vol. 33(10), pages 1261-1270, July.
    2. Lior, Noam & Chair, Panel, 2007. "Brief summary of the ECOS ’05 Panel on “Future Power Generation”," Energy, Elsevier, vol. 32(4), pages 254-260.
    3. Donaldson, D. M. & Betteridge, G. E., 1990. "The relative cost effectiveness of various measures to ameliorate global warming," Energy Policy, Elsevier, vol. 18(6), pages 563-571.
    4. Elsafty, A & Al-Daini, A.J, 2002. "Economical comparison between a solar-powered vapour absorption air-conditioning system and a vapour compression system in the Middle East," Renewable Energy, Elsevier, vol. 25(4), pages 569-583.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Armin Leopold, 2016. "Energy related system dynamic models: a literature review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 231-261, March.
    2. Park, Sangwon & Lee, Seungmoon & Jeong, Suk Jae & Song, Ho-Jun & Park, Jin-Won, 2010. "Assessment of CO2 emissions and its reduction potential in the Korean petroleum refining industry using energy-environment models," Energy, Elsevier, vol. 35(6), pages 2419-2429.
    3. Chen, Qixin & Kang, Chongqing & Xia, Qing & Guan, Dabo, 2011. "Preliminary exploration on low-carbon technology roadmap of China’s power sector," Energy, Elsevier, vol. 36(3), pages 1500-1512.
    4. Allan, Grant & Gilmartin, Michelle & McGregor, Peter & Swales, Kim, 2011. "Levelised costs of Wave and Tidal energy in the UK: Cost competitiveness and the importance of "banded" Renewables Obligation Certificates," Energy Policy, Elsevier, vol. 39(1), pages 23-39, January.
    5. Mun, Haneul & Park, Sihwan & Lee, Inkyu, 2023. "Liquid hydrogen cold energy recovery to enhance sustainability: Optimal design of dual-stage power generation cycles," Energy, Elsevier, vol. 284(C).
    6. Zhang, Y.M. & Huang, G.H. & Lin, Q.G. & Lu, H.W., 2012. "Integer fuzzy credibility constrained programming for power system management," Energy, Elsevier, vol. 38(1), pages 398-405.
    7. Chae, Yeoungjin & Kim, Myunghwan & Yoo, Seung-Hoon, 2012. "Does natural gas fuel price cause system marginal price, vice-versa, or neither? A causality analysis," Energy, Elsevier, vol. 47(1), pages 199-204.
    8. Višković, Alfredo & Franki, Vladimir & Valentić, Vladimir, 2014. "Effect of regulation on power-plant operation and investment in the South East Europe Market: An analysis of two cases," Utilities Policy, Elsevier, vol. 30(C), pages 8-17.
    9. Nandini Das & Shyamasree Dasgupta & Joyashree Roy & Oluf Langhelle & Mohsen Assadi, 2021. "Emission Mitigation and Energy Security Trade-Off: Role of Natural Gas in the Indian Power Sector," Energies, MDPI, vol. 14(13), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    2. Hang, Yin & Du, Lili & Qu, Ming & Peeta, Srinivas, 2013. "Multi-objective optimization of integrated solar absorption cooling and heating systems for medium-sized office buildings," Renewable Energy, Elsevier, vol. 52(C), pages 67-78.
    3. Dawei Feng & Wenchao Xu & Xinyu Gao & Yun Yang & Shirui Feng & Xiaohu Yang & Hailong Li, 2023. "Carbon Emission Prediction and the Reduction Pathway in Industrial Parks: A Scenario Analysis Based on the Integration of the LEAP Model with LMDI Decomposition," Energies, MDPI, vol. 16(21), pages 1-15, October.
    4. S.R. Jones & D.C. Watson & W.L. Wilkinson, 1993. "The Environmental Impact of Nuclear Power," Energy & Environment, , vol. 4(2), pages 174-192, June.
    5. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
    6. Kale, Rajesh V. & Pohekar, Sanjay D., 2014. "Electricity demand and supply scenarios for Maharashtra (India) for 2030: An application of long range energy alternatives planning," Energy Policy, Elsevier, vol. 72(C), pages 1-13.
    7. N’Tsoukpoe, Kokouvi Edem & Yamegueu, Daniel & Bassole, Justin, 2014. "Solar sorption refrigeration in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 318-335.
    8. Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
    9. George Halkos & Nickolaos Tzeremes & Panayiotis Tzeremes, 2015. "A nonparametric approach for evaluating long-term energy policy scenarios: an application to the Greek energy system," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-14, December.
    10. Aktacir, Mehmet Azmi & Büyükalaca, Orhan & YIlmaz, Tuncay, 2006. "Life-cycle cost analysis for constant-air-volume and variable-air-volume air-conditioning systems," Applied Energy, Elsevier, vol. 83(6), pages 606-627, June.
    11. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul & Aghili, Nasim, 2013. "The scenario of greenhouse gases reduction in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 400-409.
    12. Jun, Sooyoung & Lee, Seungmoon & Park, Jin-Won & Jeong, Suk-Jae & Shin, Ho-Chul, 2010. "The assessment of renewable energy planning on CO2 abatement in South Korea," Renewable Energy, Elsevier, vol. 35(2), pages 471-477.
    13. Ren, Xiao & Li, Jing & Hu, Mingke & Pei, Gang & Jiao, Dongsheng & Zhao, Xudong & Ji, Jie, 2019. "Feasibility of an innovative amorphous silicon photovoltaic/thermal system for medium temperature applications," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    14. Ge, T.S. & Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Chen, X.M. & Ma, T. & Wu, X.N. & Sun, X.L. & Chen, J.F., 2018. "Solar heating and cooling: Present and future development," Renewable Energy, Elsevier, vol. 126(C), pages 1126-1140.
    15. Subramanyam, Veena & Kumar, Amit & Talaei, Alireza & Mondal, Md. Alam Hossain, 2017. "Energy efficiency improvement opportunities and associated greenhouse gas abatement costs for the residential sector," Energy, Elsevier, vol. 118(C), pages 795-807.
    16. Lee, Seungmoon & Park, Jin-Won & Song, Ho-Jun & Maken, Sanjeev & Filburn, Tom, 2008. "Implication of CO2 capture technologies options in electricity generation in Korea," Energy Policy, Elsevier, vol. 36(1), pages 326-334, January.
    17. Zhang, Qingyu & Weili, Tian & Yumei, Wei & Yingxu, Chen, 2007. "External costs from electricity generation of China up to 2030 in energy and abatement scenarios," Energy Policy, Elsevier, vol. 35(8), pages 4295-4304, August.
    18. Shakouri G., H. & Aliakbarisani, S., 2016. "At what valuation of sustainability can we abandon fossil fuels? A comprehensive multistage decision support model for electricity planning," Energy, Elsevier, vol. 107(C), pages 60-77.
    19. Kumar, Subhash & Madlener, Reinhard, 2015. "A Least-Cost Assessment of the CO2 Mitigation Potential Using Renewable Energies in the Indian Electricity Supply Sector," FCN Working Papers 14/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    20. Lixiao Zhang & Yueyi Feng & Bin Chen, 2011. "Alternative Scenarios for the Development of a Low-Carbon City: A Case Study of Beijing, China," Energies, MDPI, vol. 4(12), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:33:y:2008:i:8:p:1320-1330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.