IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v174y2023ics0301421523000216.html
   My bibliography  Save this article

Value of different electric vehicle charging facility types under different availability situations: A South Korean case study of electric vehicle and internal combustion engine vehicle owners

Author

Listed:
  • Choi, Hyunhong
  • Lee, Jeongeun
  • Koo, Yoonmo

Abstract

The availability of charging facilities plays a critical role in electric vehicle (EV) adoption; however, as EVs continue to diffuse and the initial lack of charging availability is improving in some countries, governments must consider additional charging facility rollout policies as EVs can be charged through various types of facilities, including those at households, workplaces, and public areas. Previous studies mainly utilized real-world charging data or surveys conducted solely on EV owners for investigating these aspects. However, the opinion of conventional internal combustion engine vehicle (ICEV) owners is also important when making policy decisions for EV charging facilities. As EVs are expected to positively impact the environment, ICEV owners may also value the rollout of EV charging facilities. Moreover, some ICEV owners are potential future EV owners. Therefore, along with surveying EV owners, this study utilized the contingent valuation method for ICEV owners to estimate how their willingness to pay (valuation) changes under different facility rollout stages (initial and additional) and different types of charging facilities (public and workplace). The results showed that ICEV owners also imposed significant value for EV charging facilities. However, they imposed higher values than EV owners on public chargers during the initial diffusion stage.

Suggested Citation

  • Choi, Hyunhong & Lee, Jeongeun & Koo, Yoonmo, 2023. "Value of different electric vehicle charging facility types under different availability situations: A South Korean case study of electric vehicle and internal combustion engine vehicle owners," Energy Policy, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:enepol:v:174:y:2023:i:c:s0301421523000216
    DOI: 10.1016/j.enpol.2023.113436
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421523000216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2023.113436?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Bai-Chen & Zhao, Wei, 2018. "Willingness to pay for green electricity in Tianjin, China: Based on the contingent valuation method," Energy Policy, Elsevier, vol. 114(C), pages 98-107.
    2. William J. Vaughan & Clifford S. Russell & Arthur H. Darling, 2000. "Determining the Optimal Sample Size for Contingent Valuation Surveys," Vanderbilt University Department of Economics Working Papers 0046, Vanderbilt University Department of Economics.
    3. Choi, Hyunhong & Koo, Yoonmo, 2018. "Using Contingent Valuation and Numerical Methods to Determine Optimal Locations for Environmental Facilities: Public Arboretums in South Korea," Ecological Economics, Elsevier, vol. 149(C), pages 184-201.
    4. Jones, Benjamin A. & Ripberger, Joseph & Jenkins-Smith, Hank & Silva, Carol, 2017. "Estimating willingness to pay for greenhouse gas emission reductions provided by hydropower using the contingent valuation method," Energy Policy, Elsevier, vol. 111(C), pages 362-370.
    5. Choi, Hyunhong & Shin, Jungwoo & Woo, JongRoul, 2018. "Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact," Energy Policy, Elsevier, vol. 121(C), pages 13-24.
    6. Zachary A. Needell & James McNerney & Michael T. Chang & Jessika E. Trancik, 2016. "Potential for widespread electrification of personal vehicle travel in the United States," Nature Energy, Nature, vol. 1(9), pages 1-7, September.
    7. Wolff, Stefanie & Madlener, Reinhard, 2019. "Charged up? Preferences for Electric Vehicle Charging and Implications for Charging Infrastructure Planning," FCN Working Papers 3/2019, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    8. Siddique, Choudhury & Afifah, Fatima & Guo, Zhaomiao & Zhou, Yan, 2022. "Data mining of plug-in electric vehicles charging behavior using supply-side data," Energy Policy, Elsevier, vol. 161(C).
    9. Wolinetz, Michael & Axsen, Jonn, 2017. "How policy can build the plug-in electric vehicle market: Insights from the REspondent-based Preference And Constraints (REPAC) model," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 238-250.
    10. Woo, JongRoul & Chung, Sungsam & Lee, Chul-Yong & Huh, Sung-Yoon, 2019. "Willingness to participate in community-based renewable energy projects: A contingent valuation study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 643-652.
    11. Li, Bo & Ma, Ziming & Hidalgo-Gonzalez, Patricia & Lathem, Alex & Fedorova, Natalie & He, Gang & Zhong, Haiwang & Chen, Minyou & Kammen, Daniel M., 2021. "Modeling the impact of EVs in the Chinese power system: Pathways for implementing emissions reduction commitments in the power and transportation sectors," Energy Policy, Elsevier, vol. 149(C).
    12. W. Michael Hanemann, 1984. "Welfare Evaluations in Contingent Valuation Experiments with Discrete Responses," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(3), pages 332-341.
    13. Patt, Anthony & Aplyn, David & Weyrich, Philippe & van Vliet, Oscar, 2019. "Availability of private charging infrastructure influences readiness to buy electric cars," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 1-7.
    14. Lieven, Theo, 2015. "Policy measures to promote electric mobility – A global perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 78-93.
    15. Nicholas, Michael A. & Tal, Gil & Turrentine, Thomas S., 2017. "Advanced Plug-in Electric Vehicle Travel and Charging Behavior Interim Report," Institute of Transportation Studies, Working Paper Series qt9c28789j, Institute of Transportation Studies, UC Davis.
    16. Tal, Gil PhD & Chakraborty, Debapriya PhD & Jenn, Alan PhD & Lee, Jae Hyun PhD & Bunch, David PhD, 2020. "Factors Affecting Demand for Plug-in Charging Infrastructure: An Analysis of Plug-in Electric Vehicle Commuters," Institute of Transportation Studies, Working Paper Series qt1jh8127j, Institute of Transportation Studies, UC Davis.
    17. Oryani, Bahareh & Koo, Yoonmo & Shafiee, Afsaneh & Rezania, Shahabaldin & Jung, Jiyeon & Choi, Hyunhong & Khan, Muhammad Kamran, 2022. "Heterogeneous preferences for EVs: Evidence from Iran," Renewable Energy, Elsevier, vol. 181(C), pages 675-691.
    18. Haustein, Sonja & Jensen, Anders Fjendbo & Cherchi, Elisabetta, 2021. "Battery electric vehicle adoption in Denmark and Sweden: Recent changes, related factors and policy implications," Energy Policy, Elsevier, vol. 149(C).
    19. Chen, Chien-fei & Zarazua de Rubens, Gerardo & Noel, Lance & Kester, Johannes & Sovacool, Benjamin K., 2020. "Assessing the socio-demographic, technical, economic and behavioral factors of Nordic electric vehicle adoption and the influence of vehicle-to-grid preferences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Visaria, Anant Atul & Jensen, Anders Fjendbo & Thorhauge, Mikkel & Mabit, Stefan Eriksen, 2022. "User preferences for EV charging, pricing schemes, and charging infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 120-143.
    2. Jia, Wenjian & Chen, T. Donna, 2023. "Investigating heterogeneous preferences for plug-in electric vehicles: Policy implications from different choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    3. Lee, Jeongeun & Koo, Yoonmo, 2023. "A general equilibrium analysis of individual choice behavior on alternative fuel vehicles," Ecological Economics, Elsevier, vol. 204(PB).
    4. Brückmann, Gracia, 2022. "Test-drives & information might not boost actual battery electric vehicle uptake?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 204-218.
    5. Choi, Hyunhong & Koo, Yoonmo, 2023. "New technology product introduction strategy with considerations for consumer-targeted policy intervention and new market entrant," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    6. Kim, Ju-Hee & Lim, Seul-Ye & Yoo, Seung-Hoon, 2021. "Public preferences for introducing a power-to-heat system in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    8. Lee, Juyong & Cho, Youngsang, 2020. "Estimation of the usage fee for peer-to-peer electricity trading platform: The case of South Korea," Energy Policy, Elsevier, vol. 136(C).
    9. Haustein, Sonja & Jensen, Anders Fjendbo & Cherchi, Elisabetta, 2021. "Battery electric vehicle adoption in Denmark and Sweden: Recent changes, related factors and policy implications," Energy Policy, Elsevier, vol. 149(C).
    10. Goel, Pooja & Kumar, Aalok & Parayitam, Satyanarayana & Luthra, Sunil, 2023. "Understanding transport users' preferences for adopting electric vehicle based mobility for sustainable city: A moderated moderated-mediation model," Journal of Transport Geography, Elsevier, vol. 106(C).
    11. Dwivedi, Pankaj Prasad & Sharma, Dilip Kumar, 2023. "Evaluation and ranking of battery electric vehicles by Shannon’s entropy and TOPSIS methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 457-474.
    12. Valeriy V. Iosifov & Pavel D. Ratner, 2022. "Strengths and Weaknesses of the Russian Concept for the Development of Production and Use of Electric Vehicles Until 2030," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 40-46.
    13. Khatua, Apalak & Ranjan Kumar, Rajeev & Kumar De, Supriya, 2023. "Institutional enablers of electric vehicle market: Evidence from 30 countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    14. Lee, Min-Kyu & Nam, Jungho & Kim, Miju, 2023. "Valuing the public preference for offshore wind energy: The case study in South Korea," Energy, Elsevier, vol. 263(PB).
    15. Yuan-Yuan Wang & Yuan-Ying Chi & Jin-Hua Xu & Jia-Lin Li, 2021. "Consumer Preferences for Electric Vehicle Charging Infrastructure Based on the Text Mining Method," Energies, MDPI, vol. 14(15), pages 1-20, July.
    16. Ecer, Fatih, 2021. "A consolidated MCDM framework for performance assessment of battery electric vehicles based on ranking strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    17. Moon, Sungho & Kim, Youngwoo & Kim, Minsang & Lee, Jongsu, 2023. "Policy designs to increase public and local acceptance for energy transition in South Korea," Energy Policy, Elsevier, vol. 182(C).
    18. Hardman, Scott, 2019. "Understanding the impact of reoccurring and non-financial incentives on plug-in electric vehicle adoption – A review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 1-14.
    19. Srinivasa Raghavan, Seshadri, 2020. "Behavioral Realism of Plug-In Electric Vehicle Usage: Implications for Emission Benefits, Energy Consumption, and Policies," Institute of Transportation Studies, Working Paper Series qt1rz000pf, Institute of Transportation Studies, UC Davis.
    20. Tan, Ruipeng & Lin, Boqiang, 2020. "Are people willing to support the construction of charging facilities in China?," Energy Policy, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:174:y:2023:i:c:s0301421523000216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.