IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v168y2022ics0301421522003639.html
   My bibliography  Save this article

Does emission trading policy restrain economy? A county-scale empirical assessment from Zhejiang Province of China

Author

Listed:
  • Hu, Yingde
  • Liu, Jixun
  • Ahmed, Minhaz

Abstract

Despite extensive attention paid to emissions trading policy (ETP) approaches, the effect of ETP on economic performance is still ambiguous, and its mechanism and policy scenarios remains to be clarified. This study uses panel data at county level from 2002 to 2017 in Zhejiang province to explore the effects of China's ETP on the economic development. Adopting the difference-in-differences (DID) model, it reveals that 1) China's ETP has an aggregative negative impact on county economy. 2) gradual regression results shows that investment intensity inhibitory effect is proved and investment intensity has a strong mediating role, but innovation-boosting effect (Porter hypothesis) is not well supported as ETP does not spur the level of innovation and total factor productivity. 3) Further study shows the level of industrialisation, business environment and financial development in the county can significantly moderate the negative impact of ETP on regional economic development. This study extends the literature of environmental policy and economic development, by providing the empirical evidence at county level with 16-year time span, to generate the solid basis of ETP implementation. Overall, this study has important implications for the government to further evaluate policy effectiveness and promote ETP gradually.

Suggested Citation

  • Hu, Yingde & Liu, Jixun & Ahmed, Minhaz, 2022. "Does emission trading policy restrain economy? A county-scale empirical assessment from Zhejiang Province of China," Energy Policy, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:enepol:v:168:y:2022:i:c:s0301421522003639
    DOI: 10.1016/j.enpol.2022.113138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522003639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.113138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Wei & Li, Jing & Li, Guoxiang & Guo, Shucen, 2020. "Emission reduction effect and carbon market efficiency of carbon emissions trading policy in China," Energy, Elsevier, vol. 196(C).
    2. Yang, Xinyu & Jiang, Ping & Pan, Yao, 2020. "Does China's carbon emission trading policy have an employment double dividend and a Porter effect?," Energy Policy, Elsevier, vol. 142(C).
    3. Rubashkina, Yana & Galeotti, Marzio & Verdolini, Elena, 2015. "Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors," Energy Policy, Elsevier, vol. 83(C), pages 288-300.
    4. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    5. Gray, Wayne B. & Shadbegian, Ronald J., 2003. "Plant vintage, technology, and environmental regulation," Journal of Environmental Economics and Management, Elsevier, vol. 46(3), pages 384-402, November.
    6. Munasinghe, Mohan, 1999. "Is environmental degradation an inevitable consequence of economic growth: tunneling through the environmental Kuznets curve," Ecological Economics, Elsevier, vol. 29(1), pages 89-109, April.
    7. Giorgio Petroni & Barbara Bigliardi & Francesco Galati, 2019. "Rethinking the Porter Hypothesis: The Underappreciated Importance of Value Appropriation and Pollution Intensity," Review of Policy Research, Policy Studies Organization, vol. 36(1), pages 121-140, January.
    8. Arce, Guadalupe & López, Luis Antonio & Guan, Dabo, 2016. "Carbon emissions embodied in international trade: The post-China era," Applied Energy, Elsevier, vol. 184(C), pages 1063-1072.
    9. Wang, Han & Chen, Zhoupeng & Wu, Xingyi & Nie, Xin, 2019. "Can a carbon trading system promote the transformation of a low-carbon economy under the framework of the porter hypothesis? —Empirical analysis based on the PSM-DID method," Energy Policy, Elsevier, vol. 129(C), pages 930-938.
    10. Stavins, Robert N., 2003. "Experience with market-based environmental policy instruments," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 9, pages 355-435, Elsevier.
    11. Grazia Cecere & Nicoletta Corrocher, 2016. "Stringency of regulation and innovation in waste management: an empirical analysis on EU countries," Industry and Innovation, Taylor & Francis Journals, vol. 23(7), pages 625-646, October.
    12. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2014. "Potential gains from trading bad outputs: The case of U.S. electric power plants," Resource and Energy Economics, Elsevier, vol. 36(1), pages 99-112.
    13. Michael E. Porter & Claas van der Linde, 1995. "Toward a New Conception of the Environment-Competitiveness Relationship," Journal of Economic Perspectives, American Economic Association, vol. 9(4), pages 97-118, Fall.
    14. Barbera, Anthony J. & McConnell, Virginia D., 1990. "The impact of environmental regulations on industry productivity: Direct and indirect effects," Journal of Environmental Economics and Management, Elsevier, vol. 18(1), pages 50-65, January.
    15. Blind, Knut, 2012. "The influence of regulations on innovation: A quantitative assessment for OECD countries," Research Policy, Elsevier, vol. 41(2), pages 391-400.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Zhijie, 2023. "The hidden benefit: Emission trading scheme and business performance of downstream enterprises," Energy Economics, Elsevier, vol. 117(C).
    2. Gao, Ming, 2023. "The impacts of carbon trading policy on China's low-carbon economy based on county-level perspectives," Energy Policy, Elsevier, vol. 175(C).
    3. Wang, Hong & Hu, Xuechen & Li, Hailing, 2023. "Regional production restriction policy and firms’ green transition: Evidence from Beijing-Tianjin-Hebei region," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Xuehong & Zuo, Xuguang & Li, Hailing, 2021. "The dual effects of heterogeneous environmental regulation on the technological innovation of Chinese steel enterprises—Based on a high-dimensional fixed effects model," Ecological Economics, Elsevier, vol. 188(C).
    2. Jin, Chenfei & Tsai, Fu-Sheng & Gu, Qiuyang & Wu, Bao, 2022. "Does the porter hypothesis work well in the emission trading schema pilot? Exploring moderating effects of institutional settings," Research in International Business and Finance, Elsevier, vol. 62(C).
    3. Zhou, Peng & Song, Frank M. & Huang, Xiaoqi, 2023. "Environmental regulations and firms' green innovations: Transforming pressure into incentives," International Review of Financial Analysis, Elsevier, vol. 86(C).
    4. He, Yiqing & Ding, Xin & Yang, Chuchu, 2021. "Do environmental regulations and financial constraints stimulate corporate technological innovation? Evidence from China," Journal of Asian Economics, Elsevier, vol. 72(C).
    5. Huang, Hongyun & Mbanyele, William & Wang, Fengrong & Song, Malin & Wang, Yuzhang, 2022. "Climbing the quality ladder of green innovation: Does green finance matter?," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    6. Xie, Rong-hui & Yuan, Yi-jun & Huang, Jing-jing, 2017. "Different Types of Environmental Regulations and Heterogeneous Influence on “Green” Productivity: Evidence from China," Ecological Economics, Elsevier, vol. 132(C), pages 104-112.
    7. Huang, Zhi-xiong & Yang, Xiandong, 2021. "Carbon emissions and firm innovation," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 503-513.
    8. Yang, Chih-Hai & Tseng, Yu-Hsuan & Chen, Chiang-Ping, 2012. "Environmental regulations, induced R&D, and productivity: Evidence from Taiwan's manufacturing industries," Resource and Energy Economics, Elsevier, vol. 34(4), pages 514-532.
    9. Wang, Xiaoling & Zhang, Tianyue & Nathwani, Jatin & Yang, Fangming & Shao, Qinglong, 2022. "Environmental regulation, technology innovation, and low carbon development: Revisiting the EKC Hypothesis, Porter Hypothesis, and Jevons’ Paradox in China's iron & steel industry," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    10. Zhang, Yue-Jun & Cheng, Hao-Sen, 2021. "The impact mechanism of the ETS on CO2 emissions from the service sector: Evidence from Beijing and Shanghai," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    11. Ni, Xiaoran & Jin, Qi & Huang, Kunhao, 2022. "Environmental regulation and the cost of debt: Evidence from the carbon emission trading system pilot in China," Finance Research Letters, Elsevier, vol. 49(C).
    12. Bigerna, Simona & D'Errico, Maria Chiara & Polinori, Paolo, 2020. "Heterogeneous impacts of regulatory policy stringency on the EU electricity Industry:A Bayesian shrinkage dynamic analysis," Energy Policy, Elsevier, vol. 142(C).
    13. Chen, Zhongfei & Zhang, Xiao & Chen, Fanglin, 2021. "Do carbon emission trading schemes stimulate green innovation in enterprises? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    14. Lena, Daniela & Pasurka, Carl A. & Cucculelli, Marco, 2022. "Environmental regulation and green productivity growth: Evidence from Italian manufacturing industries," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    15. He, Yu & Zhu, Xiaobo & Zheng, Huan, 2022. "The influence of environmental protection tax law on total factor productivity: Evidence from listed firms in China," Energy Economics, Elsevier, vol. 113(C).
    16. Zhou, Di & Qiu, Yuan & Wang, Mingzhe, 2021. "Does environmental regulation promote enterprise profitability? Evidence from the implementation of China's newly revised Environmental Protection Law," Economic Modelling, Elsevier, vol. 102(C).
    17. Liu, Ming & Shan, Yanfei & Li, Yemei, 2022. "Study on the effect of carbon trading regulation on green innovation and heterogeneity analysis from China," Energy Policy, Elsevier, vol. 171(C).
    18. Liu, Shasha & Yin, Shanshan & Yin, Chuan & Sheng, Yan, 2021. "Does the price of natural resources affect firms’ total factor productivity? Evidence from a natural experiment in China," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 37-50.
    19. Shi, Beibei & Feng, Chen & Qiu, Meng & Ekeland, Anders, 2018. "Innovation suppression and migration effect: The unintentional consequences of environmental regulation," China Economic Review, Elsevier, vol. 49(C), pages 1-23.
    20. Albrizio, Silvia & Kozluk, Tomasz & Zipperer, Vera, 2017. "Environmental policies and productivity growth: Evidence across industries and firms," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 209-226.

    More about this item

    Keywords

    Emission trading policy; County economy; Innovation-boosting effect; Investment intensity inhibitory effect; Gradual DID method;
    All these keywords.

    JEL classification:

    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:168:y:2022:i:c:s0301421522003639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.