IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v149y2021ics030142152030817x.html
   My bibliography  Save this article

The use of liquefied natural gas as an alternative fuel in freight transport – Evidence from a driver's point of view

Author

Listed:
  • Rodrigues Teixeira, Ana Carolina
  • Machado, Pedro Gerber
  • Borges, Raquel Rocha
  • Felipe Brito, Thiago Luis
  • Moutinho dos Santos, Edmilson
  • Mouette, Dominique

Abstract

Nearly one-quarter of global greenhouse gas emissions are from the transport sector and around 30% of this are from road freight transport. Seeking to diversify the energy matrix and to reduce air pollution, we studied performance, emissions, and advantages/disadvantages of several alternative fuels compared to the conventional one (Diesel). This paper aims to analyze the driver's view about the use of Liquefied Natural Gas (LNG) in freight transport and set policy recommendations about it. A survey was conducted through a structure questionnarie in São Paulo (Brazil) to evaluate different aspects related to truck drivers in the use of LNG fuel technology. The results show that despite the lack of knowledge on LNG trucks, most of the respondents related it to an environmentally friendly and more economic option. Despite the higher purchase price, 68% of them would pay a loan for a longer period to acquire the technology. The main aspect about buying a conventional truck is safety (22.4%), however for LNG trucks, a tax reduction (23.1%) is the most crucial one. Lack of knowledge is a considerable barrier to the introduction of LNG for freight transport regarding technology, performance, prices, maintenance, and safety, which represent uncertainty when acquiring the technology.

Suggested Citation

  • Rodrigues Teixeira, Ana Carolina & Machado, Pedro Gerber & Borges, Raquel Rocha & Felipe Brito, Thiago Luis & Moutinho dos Santos, Edmilson & Mouette, Dominique, 2021. "The use of liquefied natural gas as an alternative fuel in freight transport – Evidence from a driver's point of view," Energy Policy, Elsevier, vol. 149(C).
  • Handle: RePEc:eee:enepol:v:149:y:2021:i:c:s030142152030817x
    DOI: 10.1016/j.enpol.2020.112106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142152030817X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.112106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rudolph, Christian, 2016. "How may incentives for electric cars affect purchase decisions?," Transport Policy, Elsevier, vol. 52(C), pages 113-120.
    2. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    3. Gao, H. Oliver & Kitirattragarn, Vincent, 2008. "Taxi owners' buying preferences of hybrid-electric vehicles and their implications for emissions in New York City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(8), pages 1064-1073, October.
    4. Gheorghe Lazaroiu & Lucian Mihaescu & Gabriel Negreanu & Constantin Pana & Ionel Pisa & Alexandru Cernat & Dana-Alexandra Ciupageanu, 2018. "Experimental Investigations of Innovative Biomass Energy Harnessing Solutions," Energies, MDPI, vol. 11(12), pages 1-18, December.
    5. Beh, Eric J. & Lombardo, Rosaria & Alberti, Gianmarco, 2018. "Correspondence analysis and the Freeman–Tukey statistic: A study of archaeological data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 73-86.
    6. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi, 2016. "Natural gas as vehicle fuel in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 521-533.
    7. Thiruvengadam, Arvind & Besch, Marc & Padmanaban, Vishnu & Pradhan, Saroj & Demirgok, Berk, 2018. "Natural gas vehicles in heavy-duty transportation-A review," Energy Policy, Elsevier, vol. 122(C), pages 253-259.
    8. Taefi, Tessa T. & Kreutzfeldt, Jochen & Held, Tobias & Fink, Andreas, 2016. "Supporting the adoption of electric vehicles in urban road freight transport – A multi-criteria analysis of policy measures in Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 61-79.
    9. Linzenich, Anika & Arning, Katrin & Bongartz, Dominik & Mitsos, Alexander & Ziefle, Martina, 2019. "What fuels the adoption of alternative fuels? Examining preferences of German car drivers for fuel innovations," Applied Energy, Elsevier, vol. 249(C), pages 222-236.
    10. Seitz, Claudio S. & Beuttenmüller, Oliver & Terzidis, Orestis, 2015. "Organizational adoption behavior of CO2-saving power train technologies: An empirical study on the German heavy-duty vehicles market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 247-262.
    11. Gnann, Till & Plötz, Patrick, 2015. "A review of combined models for market diffusion of alternative fuel vehicles and their refueling infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 783-793.
    12. Zhang, Yong & Jiang, Yunjian & Rui, Weina & Thompson, Russell G., 2019. "Analyzing truck fleets’ acceptance of alternative fuel freight vehicles in China," Renewable Energy, Elsevier, vol. 134(C), pages 1148-1155.
    13. von Rosenstiel, Dirk Peters & Heuermann, Daniel F. & Hüsig, Stefan, 2015. "Why has the introduction of natural gas vehicles failed in Germany?—Lessons on the role of market failure in markets for alternative fuel vehicles," Energy Policy, Elsevier, vol. 78(C), pages 91-101.
    14. Kelley, Scott & Kuby, Michael, 2017. "Decentralized refueling of compressed natural gas (CNG) fleet vehicles in Southern California," Energy Policy, Elsevier, vol. 109(C), pages 350-359.
    15. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles," Energy Policy, Elsevier, vol. 35(11), pages 5865-5875, November.
    16. Leibowicz, Benjamin D., 2018. "Policy recommendations for a transition to sustainable mobility based on historical diffusion dynamics of transport systems," Energy Policy, Elsevier, vol. 119(C), pages 357-366.
    17. Kuby, Michael, 2019. "The opposite of ubiquitous: How early adopters of fast-filling alt-fuel vehicles adapt to the sparsity of stations," Journal of Transport Geography, Elsevier, vol. 75(C), pages 46-57.
    18. Malik, Leeza & Tiwari, Geetam, 2017. "Assessment of interstate freight vehicle characteristics and impact of future emission and fuel economy standards on their emissions in India," Energy Policy, Elsevier, vol. 108(C), pages 121-133.
    19. Klemick, Heather & Kopits, Elizabeth & Wolverton, Ann & Sargent, Keith, 2015. "Heavy-duty trucking and the energy efficiency paradox: Evidence from focus groups and interviews," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 154-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoxuan Wei & Meng Ye & Liang Yuan & Wei Bi & Weisheng Lu, 2022. "Analyzing the Freight Characteristics and Carbon Emission of Construction Waste Hauling Trucks: Big Data Analytics of Hong Kong," IJERPH, MDPI, vol. 19(4), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ravigné, E. & Da Costa, P., 2021. "Economic and environmental performances of natural gas for heavy trucks: A case study on the French automotive industry supply chain," Energy Policy, Elsevier, vol. 149(C).
    2. Brozynski, Max T. & Leibowicz, Benjamin D., 2022. "A multi-level optimization model of infrastructure-dependent technology adoption: Overcoming the chicken-and-egg problem," European Journal of Operational Research, Elsevier, vol. 300(2), pages 755-770.
    3. Kelley, Scott & Krafft, Aimee & Kuby, Michael & Lopez, Oscar & Stotts, Rhian & Liu, Jingteng, 2020. "How early hydrogen fuel cell vehicle adopters geographically evaluate a network of refueling stations in California," Journal of Transport Geography, Elsevier, vol. 89(C).
    4. Girma T. Chala & Abd Rashid Abd Aziz & Ftwi Y. Hagos, 2018. "Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue," Energies, MDPI, vol. 11(11), pages 1-44, October.
    5. Jose J. Soto & Victor Cantillo & Julian Arellana, 2018. "Incentivizing alternative fuel vehicles: the influence of transport policies, attitudes and perceptions," Transportation, Springer, vol. 45(6), pages 1721-1753, November.
    6. Flávia Mendes de Almeida Collaço & Ana Carolina Rodrigues Teixeira & Pedro Gerber Machado & Raquel Rocha Borges & Thiago Luis Felipe Brito & Dominique Mouette, 2022. "Road Freight Transport Literature and the Achievements of the Sustainable Development Goals—A Systematic Review," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    7. Wang, Hongxia & Fang, Hong & Yu, Xueying & Wang, Ke, 2015. "Development of natural gas vehicles in China: An assessment of enabling factors and barriers," Energy Policy, Elsevier, vol. 85(C), pages 80-93.
    8. Tannaz Jahaniaghdam & Amir Reza Mamdoohi & Salman Aghidi Kheyrabadi & Mehdi Mehryar & Francesco Ciari, 2023. "Preferences for Alternative Fuel Trucks among International Transport Companies," World, MDPI, vol. 4(4), pages 1-21, November.
    9. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    10. Gnann, T. & Speth, D. & Seddig, K. & Stich, M. & Schade, W. & Gómez Vilchez, J.J., 2022. "How to integrate real-world user behavior into models of the market diffusion of alternative fuels in passenger cars - An in-depth comparison of three models for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Imran Khan, Muhammad, 2017. "Policy options for the sustainable development of natural gas as transportation fuel," Energy Policy, Elsevier, vol. 110(C), pages 126-136.
    12. Osorio-Tejada, Jose Luis & Llera-Sastresa, Eva & Scarpellini, Sabina, 2017. "Liquefied natural gas: Could it be a reliable option for road freight transport in the EU?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 785-795.
    13. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    14. Larizzatti Zacharias, Luis Guilherme & Antunes Costa de Andrade, Ana Clara & Guichet, Xavier & Mouette, Dominique & Peyerl, Drielli, 2022. "Natural gas as a vehicular fuel in Brazil: Barriers and lessons to learn," Energy Policy, Elsevier, vol. 167(C).
    15. Su, Sheng & Ge, Yang & Hou, Pan & Wang, Xin & Wang, Yachao & Lyu, Tao & Luo, Wanyou & Lai, Yitu & Ge, Yunshan & Lyu, Liqun, 2021. "China VI heavy-duty moving average window (MAW) method: Quantitative analysis of the problem, causes, and impacts based on the real driving data," Energy, Elsevier, vol. 225(C).
    16. Tanco, Martín & Aresti, Matías & Villalobos, Julio & Moratorio, Diego & Jurburg, Daniel & Holguin-Veras, Jose, 2019. "Assessment of the effectiveness of a fuel additive to reduce fuel consumption of HDVs highlights the importance of verification programs," Energy, Elsevier, vol. 189(C).
    17. Sehatpour, Mohammad-Hadi & Kazemi, Aliyeh & Sehatpour, Hesam-eddin, 2017. "Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 295-310.
    18. Charles Kagiri & Lijun Zhang & Xiaohua Xia, 2019. "A Hierarchical Optimisation of a Compressed Natural Gas Station for Energy and Fuelling Efficiency under a Demand Response Program," Energies, MDPI, vol. 12(11), pages 1-24, June.
    19. Kuby, Michael, 2019. "The opposite of ubiquitous: How early adopters of fast-filling alt-fuel vehicles adapt to the sparsity of stations," Journal of Transport Geography, Elsevier, vol. 75(C), pages 46-57.
    20. Chen, Zheng & Zhang, Fan & Xu, Boya & Zhang, Quanchang & Liu, Jingping, 2017. "Influence of methane content on a LNG heavy-duty engine with high compression ratio," Energy, Elsevier, vol. 128(C), pages 329-336.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:149:y:2021:i:c:s030142152030817x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.