IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v189y2019ics0360544219319644.html
   My bibliography  Save this article

Assessment of the effectiveness of a fuel additive to reduce fuel consumption of HDVs highlights the importance of verification programs

Author

Listed:
  • Tanco, Martín
  • Aresti, Matías
  • Villalobos, Julio
  • Moratorio, Diego
  • Jurburg, Daniel
  • Holguin-Veras, Jose

Abstract

Trucks’ fuel consumption translates into large amount of greenhouse gases emissions and accounts for a large portion of the costs of transportation. This situation highlights the need for more fuel-efficient freight vehicles. In this context, several technologies have emerged to enhance heavy-duty vehicles’ (HDV’s) fuel economy. In this paper, the impact on fuel consumption due to the use of a widely used additive was tested under three test conditions using two test procedures: SAE J1321 and NCh 3331. Heavy-duty trucks and urban buses were tested on a closed test track using driving conditions similar to those found in urban operation. Another round of tests (only using trucks) was carried out on a highway. The main objective of those tests was to determine the impact of the use of the selected additive on fuel consumption under different operational conditions and to assess the merits of the additive in an emerging market. The results showed no statistical significant impacts on fuel consumption that could be attributed to the additive tested. These results highlight the need for technology verification programs that, based on rigorous testing protocols, provide policy makers in emerging countries with the technical information to determine if a fuel additive is indeed as effective as stated by the manufacturer.

Suggested Citation

  • Tanco, Martín & Aresti, Matías & Villalobos, Julio & Moratorio, Diego & Jurburg, Daniel & Holguin-Veras, Jose, 2019. "Assessment of the effectiveness of a fuel additive to reduce fuel consumption of HDVs highlights the importance of verification programs," Energy, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319644
    DOI: 10.1016/j.energy.2019.116269
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219319644
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Piecyk, Maja I. & McKinnon, Alan C., 2010. "Forecasting the carbon footprint of road freight transport in 2020," International Journal of Production Economics, Elsevier, vol. 128(1), pages 31-42, November.
    2. Lee, Gunwoo & You, Soyoung (Iris) & Ritchie, Stephen G. & Saphores, Jean-Daniel & Jayakrishnan, R. & Ogunseitan, Oladele, 2012. "Assessing air quality and health benefits of the Clean Truck Program in the Alameda corridor, CA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1177-1193.
    3. Seitz, Claudio S. & Beuttenmüller, Oliver & Terzidis, Orestis, 2015. "Organizational adoption behavior of CO2-saving power train technologies: An empirical study on the German heavy-duty vehicles market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 247-262.
    4. Klemick, Heather & Kopits, Elizabeth & Wolverton, Ann & Sargent, Keith, 2015. "Heavy-duty trucking and the energy efficiency paradox: Evidence from focus groups and interviews," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 154-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kroyan, Yuri & Wojcieszyk, Michal & Kaario, Ossi & Larmi, Martti & Zenger, Kai, 2020. "Modeling the end-use performance of alternative fuels in light-duty vehicles," Energy, Elsevier, vol. 205(C).
    2. Luo, Feiteng & Song, Wenyan & Li, Jianping & Chen, Wenjuan & Long, Yaosong, 2021. "Experimental study of kerosene supersonic combustion with pilot hydrogen and fuel additive under low flight mach conditions," Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigues Teixeira, Ana Carolina & Machado, Pedro Gerber & Borges, Raquel Rocha & Felipe Brito, Thiago Luis & Moutinho dos Santos, Edmilson & Mouette, Dominique, 2021. "The use of liquefied natural gas as an alternative fuel in freight transport – Evidence from a driver's point of view," Energy Policy, Elsevier, vol. 149(C).
    2. Valentin Carlan & Christa Sys & Thierry Vanelslander, 2019. "Innovation in Road Freight Transport: Quantifying the Environmental Performance of Operational Cost-Reducing Practices," Sustainability, MDPI, vol. 11(8), pages 1-26, April.
    3. Globisch, Joachim & Dütschke, Elisabeth & Schleich, Joachim, 2018. "Acceptance of electric passenger cars in commercial fleets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 122-129.
    4. Rafael Tordecilla-Madera & Andrés Polo & Adrián Cañón, 2018. "Vehicles Allocation for Fruit Distribution Considering CO 2 Emissions and Decisions on Subcontracting," Sustainability, MDPI, vol. 10(7), pages 1-21, July.
    5. Zuo, Chengchoa & Birkin, Mark & Clarke, Graham & McEvoy, Fiona & Bloodworth, Andrew, 2018. "Reducing carbon emissions related to the transportation of aggregates: Is road or rail the solution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 26-38.
    6. Khan, Shakil & Maoh, Hanna, 2022. "Investigating attitudes towards fleet electrification – An exploratory analysis approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 188-205.
    7. Seitz, Claudio S. & Beuttenmüller, Oliver & Terzidis, Orestis, 2015. "Organizational adoption behavior of CO2-saving power train technologies: An empirical study on the German heavy-duty vehicles market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 247-262.
    8. O’Brien, Thomas & Reeb, Tyler, 2016. "Freight Efficiency Strategies: Operational Modernization at Distribution Nodes," Institute of Transportation Studies, Working Paper Series qt4fg9f0gv, Institute of Transportation Studies, UC Davis.
    9. Breen, Benjamin & Vega, Amaya & Feo-Valero, Maria, 2015. "An empirical analysis of mode and route choice for international freight transport in Ireland," Working Papers 262587, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    10. Franco Ruzzenenti & Andreas A. Papandreou, 2015. "Effects of fossil fuel prices on the transition to a low-carbon economy," Working papers wpaper89, Financialisation, Economy, Society & Sustainable Development (FESSUD) Project.
    11. Zhang, Zhenzhen & Wei, Lijun & Lim, Andrew, 2015. "An evolutionary local search for the capacitated vehicle routing problem minimizing fuel consumption under three-dimensional loading constraints," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 20-35.
    12. Tobias Meyer & Heiko A. von der Gracht & Evi Hartmann, 2022. "Technology foresight for sustainable road freight transportation: Insights from a global real‐time Delphi study," Futures & Foresight Science, John Wiley & Sons, vol. 4(1), March.
    13. Dincbas, Tugba & Ergeneli, Azize & Yigitbasioglu, Hakan, 2021. "Clean technology adoption in the context of climate change: Application in the mineral products industry," Technology in Society, Elsevier, vol. 64(C).
    14. Xu Wang & Xiang Su & Ke Bi, 2023. "Achieving Synergies of Carbon Emission Reduction, Cost Savings, and Asset Investments in China’s Industrial Sector: Towards Sustainable Practices," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    15. Gatta, Valerio & Marcucci, Edoardo, 2014. "Urban freight transport and policy changes: Improving decision makers' awareness via an agent-specific approach," Transport Policy, Elsevier, vol. 36(C), pages 248-252.
    16. R. Jothi Basu & Nachiappan Subramanian & Angappa Gunasekaran & P. L. K. Palaniappan, 2017. "Influence of non-price and environmental sustainability factors on truckload procurement process," Annals of Operations Research, Springer, vol. 250(2), pages 363-388, March.
    17. Dekker, Rommert & Bloemhof, Jacqueline & Mallidis, Ioannis, 2012. "Operations Research for green logistics – An overview of aspects, issues, contributions and challenges," European Journal of Operational Research, Elsevier, vol. 219(3), pages 671-679.
    18. Malina, Christiane & Scheffler, Frauke, 2015. "The impact of Low Emission Zones on particulate matter concentration and public health," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 372-385.
    19. Xi Xie & Wenjia Cai & Yongkai Jiang & Weihua Zeng, 2015. "Carbon Footprints and Embodied Carbon Flows Analysis for China’s Eight Regions: A New Perspective for Mitigation Solutions," Sustainability, MDPI, vol. 7(8), pages 1-17, July.
    20. Yi-Chung Hu & Peng Jiang & Jung-Fa Tsai & Ching-Ying Yu, 2021. "An Optimized Fractional Grey Prediction Model for Carbon Dioxide Emissions Forecasting," IJERPH, MDPI, vol. 18(2), pages 1-12, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.