IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v149y2021ics0301421520307163.html
   My bibliography  Save this article

Drivers and benefits of shared demand-side battery storage – an Australian case study

Author

Listed:
  • Keck, Felix
  • Lenzen, Manfred

Abstract

Electrical energy storage (EES) has the potential to facilitate the transition to renewable energy supply in the future as it brings flexibility into the electricity network. Uncertainties exist around regulation, commercial models, technology and cost but EES is recognized among experts as being part of the solution. This study offers an economic analysis of the role of EES in the low-voltage (LV) network as shared asset between rooftop photovoltaic (PV) system owners, distribution network and energy trading companies. A conceptual analysis of relevant drivers, such as increasing distributed energy resources (DER; primarily rooftop PV), decreasing EES cost, and expected benefits are assessed in a case study using annual sample data from a distribution network in eastern New South Wales, Australia. The study finds that shared EES located in the LV network, if joint revenue from PV customers, distribution network and energy trading companies is captured, can become NPV positive in 2023 and bring additional benefits to a range of stakeholders. A 500 kWh battery located next to a transformer and mitigating up to 30% overload is found to be optimal. However, multiple regulatory challenges need to be overcome to enable shared usage of EES in vertically disintegrated energy sectors.

Suggested Citation

  • Keck, Felix & Lenzen, Manfred, 2021. "Drivers and benefits of shared demand-side battery storage – an Australian case study," Energy Policy, Elsevier, vol. 149(C).
  • Handle: RePEc:eee:enepol:v:149:y:2021:i:c:s0301421520307163
    DOI: 10.1016/j.enpol.2020.112005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520307163
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.112005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Talent, Orlando & Du, Haiping, 2018. "Optimal sizing and energy scheduling of photovoltaic-battery systems under different tariff structures," Renewable Energy, Elsevier, vol. 129(PA), pages 513-526.
    2. Limpens, Gauthier & Jeanmart, Hervé, 2018. "Electricity storage needs for the energy transition: An EROI based analysis illustrated by the case of Belgium," Energy, Elsevier, vol. 152(C), pages 960-973.
    3. Papaefthymiou, Georgios & Haesen, Edwin & Sach, Thobias, 2018. "Power System Flexibility Tracker: Indicators to track flexibility progress towards high-RES systems," Renewable Energy, Elsevier, vol. 127(C), pages 1026-1035.
    4. Brear, M.J. & Jeppesen, M. & Chattopadhyay, D. & Manzie, C. & Alpcan, T. & Dargaville, R., 2016. "Least cost, utility scale abatement from Australia's NEM (National Electricity Market). Part 2: Scenarios and policy implications," Energy, Elsevier, vol. 101(C), pages 621-628.
    5. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    6. Keck, Felix & Lenzen, Manfred & Vassallo, Anthony & Li, Mengyu, 2019. "The impact of battery energy storage for renewable energy power grids in Australia," Energy, Elsevier, vol. 173(C), pages 647-657.
    7. Ratnam, Elizabeth L. & Weller, Steven R. & Kellett, Christopher M., 2015. "An optimization-based approach to scheduling residential battery storage with solar PV: Assessing customer benefit," Renewable Energy, Elsevier, vol. 75(C), pages 123-134.
    8. Alfredo Bartolozzi & Salvatore Favuzza & Mariano Giuseppe Ippolito & Diego La Cascia & Eleonora Riva Sanseverino & Gaetano Zizzo, 2017. "A New Platform for Automatic Bottom-Up Electric Load Aggregation," Energies, MDPI, vol. 10(11), pages 1-24, October.
    9. Blakers, Andrew & Lu, Bin & Stocks, Matthew, 2017. "100% renewable electricity in Australia," Energy, Elsevier, vol. 133(C), pages 471-482.
    10. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    11. Yekini Suberu, Mohammed & Wazir Mustafa, Mohd & Bashir, Nouruddeen, 2014. "Energy storage systems for renewable energy power sector integration and mitigation of intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 499-514.
    12. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    13. Robinson, Scott A. & Rai, Varun, 2015. "Determinants of spatio-temporal patterns of energy technology adoption: An agent-based modeling approach," Applied Energy, Elsevier, vol. 151(C), pages 273-284.
    14. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    15. Arnold, Uwe & Yildiz, Özgür, 2015. "Economic risk analysis of decentralized renewable energy infrastructures – A Monte Carlo Simulation approach," Renewable Energy, Elsevier, vol. 77(C), pages 227-239.
    16. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2016. "Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building," Applied Energy, Elsevier, vol. 171(C), pages 153-171.
    17. Rodrigo Martins & Holger C. Hesse & Johanna Jungbauer & Thomas Vorbuchner & Petr Musilek, 2018. "Optimal Component Sizing for Peak Shaving in Battery Energy Storage System for Industrial Applications," Energies, MDPI, vol. 11(8), pages 1-22, August.
    18. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    19. Rappaport, Ron D. & Miles, John, 2017. "Cloud energy storage for grid scale applications in the UK," Energy Policy, Elsevier, vol. 109(C), pages 609-622.
    20. Clay Campaigne & Shmuel S. Oren, 2016. "Firming renewable power with demand response: an end-to-end aggregator business model," Journal of Regulatory Economics, Springer, vol. 50(1), pages 1-37, August.
    21. Luburić, Zora & Pandžić, Hrvoje & Plavšić, Tomislav & Teklić, Ljupko & Valentić, Vladimir, 2018. "Role of energy storage in ensuring transmission system adequacy and security," Energy, Elsevier, vol. 156(C), pages 229-239.
    22. Vieira, Filomeno M. & Moura, Pedro S. & de Almeida, Aníbal T., 2017. "Energy storage system for self-consumption of photovoltaic energy in residential zero energy buildings," Renewable Energy, Elsevier, vol. 103(C), pages 308-320.
    23. Pflaum, Peter & Alamir, M. & Lamoudi, M.Y., 2017. "Battery sizing for PV power plants under regulations using randomized algorithms," Renewable Energy, Elsevier, vol. 113(C), pages 596-607.
    24. Awasthi, Abhishek & Venkitusamy, Karthikeyan & Padmanaban, Sanjeevikumar & Selvamuthukumaran, Rajasekar & Blaabjerg, Frede & Singh, Asheesh K., 2017. "Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm," Energy, Elsevier, vol. 133(C), pages 70-78.
    25. Babacan, Oytun & Ratnam, Elizabeth L. & Disfani, Vahid R. & Kleissl, Jan, 2017. "Distributed energy storage system scheduling considering tariff structure, energy arbitrage and solar PV penetration," Applied Energy, Elsevier, vol. 205(C), pages 1384-1393.
    26. Jeppesen, M. & Brear, M.J. & Chattopadhyay, D. & Manzie, C. & Dargaville, R. & Alpcan, T., 2016. "Least cost, utility scale abatement from Australia's NEM (National Electricity Market). Part 1: Problem formulation and modelling," Energy, Elsevier, vol. 101(C), pages 606-620.
    27. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    28. Müller, Simon C. & Welpe, Isabell M., 2018. "Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers," Energy Policy, Elsevier, vol. 118(C), pages 492-503.
    29. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2013. "Least cost 100% renewable electricity scenarios in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 270-282.
    30. Li, Jiaming, 2019. "Optimal sizing of grid-connected photovoltaic battery systems for residential houses in Australia," Renewable Energy, Elsevier, vol. 136(C), pages 1245-1254.
    31. Roberts, Mike B. & Bruce, Anna & MacGill, Iain, 2019. "Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings," Applied Energy, Elsevier, vol. 245(C), pages 78-95.
    32. McConnell, Dylan & Forcey, Tim & Sandiford, Mike, 2015. "Estimating the value of electricity storage in an energy-only wholesale market," Applied Energy, Elsevier, vol. 159(C), pages 422-432.
    33. Guido Carpinelli & Anna Rita Di Fazio & Shahab Khormali & Fabio Mottola, 2014. "Optimal Sizing of Battery Storage Systems for Industrial Applications when Uncertainties Exist," Energies, MDPI, vol. 7(1), pages 1-20, January.
    34. Gaillard, Pierre & Goude, Yannig & Nedellec, Raphaël, 2016. "Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1038-1050.
    35. Green, Jemma & Newman, Peter, 2017. "Citizen utilities: The emerging power paradigm," Energy Policy, Elsevier, vol. 105(C), pages 283-293.
    36. Engelken, Maximilian & Römer, Benedikt & Drescher, Marcus & Welpe, Isabell M. & Picot, Arnold, 2016. "Comparing drivers, barriers, and opportunities of business models for renewable energies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 795-809.
    37. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Multi-objective optimization of energy arbitrage in community energy storage systems using different battery technologies," Applied Energy, Elsevier, vol. 239(C), pages 356-372.
    38. Luthander, Rasmus & Widén, Joakim & Munkhammar, Joakim & Lingfors, David, 2016. "Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment," Energy, Elsevier, vol. 112(C), pages 221-231.
    39. Quoilin, Sylvain & Kavvadias, Konstantinos & Mercier, Arnaud & Pappone, Irene & Zucker, Andreas, 2016. "Quantifying self-consumption linked to solar home battery systems: Statistical analysis and economic assessment," Applied Energy, Elsevier, vol. 182(C), pages 58-67.
    40. Jenny Riesz & Michael Milligan, 2015. "Designing electricity markets for a high penetration of variable renewables," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(3), pages 279-289, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Xiaoling & Zhang, Huqing & Fan, Lurong & Zhang, Zhe & Peña-Mora, Feniosky, 2023. "Planning shared energy storage systems for the spatio-temporal coordination of multi-site renewable energy sources on the power generation side," Energy, Elsevier, vol. 282(C).
    2. Schwidtal, Jan Marc & Agostini, Marco & Coppo, Massimiliano & Bignucolo, Fabio & Lorenzoni, Arturo, 2023. "Optimized operation of distributed energy resources: The opportunities of value stacking for Power-to-Gas aggregated with PV," Applied Energy, Elsevier, vol. 334(C).
    3. Ma, Mingtao & Huang, Huijun & Song, Xiaoling & Peña-Mora, Feniosky & Zhang, Zhe & Chen, Jie, 2022. "Optimal sizing and operations of shared energy storage systems in distribution networks: A bi-level programming approach," Applied Energy, Elsevier, vol. 307(C).
    4. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keck, Felix & Lenzen, Manfred & Vassallo, Anthony & Li, Mengyu, 2019. "The impact of battery energy storage for renewable energy power grids in Australia," Energy, Elsevier, vol. 173(C), pages 647-657.
    2. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
    3. Say, Kelvin & Schill, Wolf-Peter & John, Michele, 2020. "Degrees of displacement: The impact of household PV battery prosumage on utility generation and storage," Applied Energy, Elsevier, vol. 276(C).
    4. Scheller, Fabian & Burkhardt, Robert & Schwarzeit, Robert & McKenna, Russell & Bruckner, Thomas, 2020. "Competition between simultaneous demand-side flexibility options: the case of community electricity storage systems," Applied Energy, Elsevier, vol. 269(C).
    5. Tino Aboumahboub & Robert J. Brecha & Himalaya Bir Shrestha & Ursula Fuentes & Andreas Geiges & William Hare & Michiel Schaeffer & Lara Welder & Matthew J. Gidden, 2020. "Decarbonization of Australia’s Energy System: Integrated Modeling of the Transformation of Electricity, Transportation, and Industrial Sectors," Energies, MDPI, vol. 13(15), pages 1-39, July.
    6. Fabian Scheller & Robert Burkhardt & Robert Schwarzeit & Russell McKenna & Thomas Bruckner, 2020. "Competition between simultaneous demand-side flexibility options: The case of community electricity storage systems," Papers 2011.05809, arXiv.org.
    7. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & José Matas, 2021. "Individual vs. Community: Economic Assessment of Energy Management Systems under Different Regulatory Frameworks," Energies, MDPI, vol. 14(3), pages 1-27, January.
    8. Palmer, Graham, 2017. "An input-output based net-energy assessment of an electricity supply industry," Energy, Elsevier, vol. 141(C), pages 1504-1516.
    9. Howard, Bahareh Sara & Hamilton, Nicholas E. & Diesendorf, Mark & Wiedmann, Thomas, 2018. "Modeling the carbon budget of the Australian electricity sector's transition to renewable energy," Renewable Energy, Elsevier, vol. 125(C), pages 712-728.
    10. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    11. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    12. Wang, Peiguang & Zhang, Zhaoyan & Fu, Lei & Ran, Ning, 2021. "Optimal design of home energy management strategy based on refined load model," Energy, Elsevier, vol. 218(C).
    13. Li, Mengyu & Lenzen, Manfred & Wang, Dai & Nansai, Keisuke, 2020. "GIS-based modelling of electric-vehicle–grid integration in a 100% renewable electricity grid," Applied Energy, Elsevier, vol. 262(C).
    14. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    15. Kotarela, F. & Kyritsis, A. & Papanikolaou, N. & Kalogirou, S.A., 2021. "Enhanced nZEB concept incorporating a sustainable Grid Support Scheme," Renewable Energy, Elsevier, vol. 169(C), pages 714-725.
    16. Kang, Hyuna & Jung, Seunghoon & Kim, Hakpyeong & Hong, Juwon & Jeoung, Jaewon & Hong, Taehoon, 2023. "Multi-objective sizing and real-time scheduling of battery energy storage in energy-sharing community based on reinforcement learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    17. Yasir Alsaedi & Gurudeo Anand Tularam & Victor Wong, 2021. "Impact of the Nature of Energy Management and Responses to Policies Regarding Solar and Wind Pricing: A Qualitative Study of the Australian Electricity Markets," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 191-205.
    18. Say, Kelvin & Csereklyei, Zsuzsanna & Brown, Felix Gabriel & Wang, Changlong, 2023. "The economics of public transport electrification: A case study from Victoria, Australia," Energy Economics, Elsevier, vol. 120(C).
    19. Andreolli, Francesca & D'Alpaos, Chiara & Kort, Peter, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," FEEM Working Papers 330498, Fondazione Eni Enrico Mattei (FEEM).
    20. Roberts, Mike B. & Bruce, Anna & MacGill, Iain, 2019. "Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings," Applied Energy, Elsevier, vol. 245(C), pages 78-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:149:y:2021:i:c:s0301421520307163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.