IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v35y2014icp499-514.html
   My bibliography  Save this article

Energy storage systems for renewable energy power sector integration and mitigation of intermittency

Author

Listed:
  • Yekini Suberu, Mohammed
  • Wazir Mustafa, Mohd
  • Bashir, Nouruddeen

Abstract

Currently, the electric power sector is looking forward towards increasing the bent for availability, reliability and security of energy supply to consumers. This pursuit has vehemently increased the intention for integrating renewable energy (RE) into the electricity sector as a strategy to curb the problem of energy deficiency especially in isolated off-grid settlements. However, the variability in the sources of RE supply coupled with conditional changes in the level of energy consumption with respect to time has brought to focus the necessity for energy storage systems (ESSs). Despite the stochastic nature of RE produced from solar and wind energy and to some extent hydro, interest in their exploitation is still growing high due to their sustainability regarding environmental receptiveness. Thus, this paper extensively reviews the state of the art of three different kinds of energy storage technologies (pumped hydroelectricity storage, batteries and fuel cells) suitable for the integration and management of intermittency in RE. Within the context of the review, advantages and disadvantages of the various technologies are also presented. Additionally, it also pin-points on the different areas of applications of ESSs for RE integration and offers review summary on factors to be considered for selecting appropriate energy storage technology for either commercial or domestic applications. Finally, the paper concluded that ESSs selection is based on performance characteristics and fuel source used whereas no single ESS can meet all the possible requirements to be called a supreme ESS.

Suggested Citation

  • Yekini Suberu, Mohammed & Wazir Mustafa, Mohd & Bashir, Nouruddeen, 2014. "Energy storage systems for renewable energy power sector integration and mitigation of intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 499-514.
  • Handle: RePEc:eee:rensus:v:35:y:2014:i:c:p:499-514
    DOI: 10.1016/j.rser.2014.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114002366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chakraborty, Arindam, 2011. "Advancements in power electronics and drives in interface with growing renewable energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1816-1827, May.
    2. Bueno, C. & Carta, J.A., 2006. "Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 312-340, August.
    3. Kaldellis, J. K. & Kavadias, K. A., 2001. "Optimal wind-hydro solution for Aegean Sea islands' electricity-demand fulfilment," Applied Energy, Elsevier, vol. 70(4), pages 333-354, December.
    4. Steffen, Bjarne, 2012. "Prospects for pumped-hydro storage in Germany," Energy Policy, Elsevier, vol. 45(C), pages 420-429.
    5. van der Linden, Septimus, 2006. "Bulk energy storage potential in the USA, current developments and future prospects," Energy, Elsevier, vol. 31(15), pages 3446-3457.
    6. Martin, Elliot & Shaheen, Susan A & Lipman, Timothy E & Lidicker, Jeffrey R, 2009. "Behavioral response to hydrogen fuel cell vehicles and refueling: Results of California drive clinics," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt20c342sp, Institute of Transportation Studies, UC Berkeley.
    7. Hajimolana, S. Ahmad & Hussain, M. Azlan & Daud, W.M. Ashri Wan & Soroush, M. & Shamiri, A., 2011. "Mathematical modeling of solid oxide fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1893-1917, May.
    8. Anagnostopoulos, John S. & Papantonis, Dimitris E., 2012. "Study of pumped storage schemes to support high RES penetration in the electric power system of Greece," Energy, Elsevier, vol. 45(1), pages 416-423.
    9. Bakos, George C., 2002. "Feasibility study of a hybrid wind/hydro power-system for low-cost electricity production," Applied Energy, Elsevier, vol. 72(3-4), pages 599-608, July.
    10. Dursun, Bahtiyar & Alboyaci, Bora, 2010. "The contribution of wind-hydro pumped storage systems in meeting Turkey's electric energy demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1979-1988, September.
    11. Baker, John, 2008. "New technology and possible advances in energy storage," Energy Policy, Elsevier, vol. 36(12), pages 4368-4373, December.
    12. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    13. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2012. "Assessment of utility energy storage options for increased renewable energy penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4141-4147.
    14. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    15. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    16. Andújar, J.M. & Segura, F., 2009. "Fuel cells: History and updating. A walk along two centuries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2309-2322, December.
    17. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    18. Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
    19. Walawalkar, Rahul & Apt, Jay & Mancini, Rick, 2007. "Economics of electric energy storage for energy arbitrage and regulation in New York," Energy Policy, Elsevier, vol. 35(4), pages 2558-2568, April.
    20. Hall, Peter J. & Bain, Euan J., 2008. "Energy-storage technologies and electricity generation," Energy Policy, Elsevier, vol. 36(12), pages 4352-4355, December.
    21. He, Wei, 1997. "A simulation model for evaluating Tianhuangping pumped storage hydro-plant," Renewable Energy, Elsevier, vol. 11(2), pages 263-266.
    22. Deane, J.P. & Ó Gallachóir, B.P. & McKeogh, E.J., 2010. "Techno-economic review of existing and new pumped hydro energy storage plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1293-1302, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    2. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    3. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    4. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    5. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    6. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    7. Poullikkas, Andreas, 2013. "A comparative overview of large-scale battery systems for electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 778-788.
    8. Zhou, Zhibin & Benbouzid, Mohamed & Frédéric Charpentier, Jean & Scuiller, Franck & Tang, Tianhao, 2013. "A review of energy storage technologies for marine current energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 390-400.
    9. Guittet, Mélanie & Capezzali, Massimiliano & Gaudard, Ludovic & Romerio, Franco & Vuille, François & Avellan, François, 2016. "Study of the drivers and asset management of pumped-storage power plants historical and geographical perspective," Energy, Elsevier, vol. 111(C), pages 560-579.
    10. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    11. Shkolnikov, E.I. & Zhuk, A.Z. & Vlaskin, M.S., 2011. "Aluminum as energy carrier: Feasibility analysis and current technologies overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4611-4623.
    12. Dhillon, Javed & Kumar, Arun & Singal, S.K., 2014. "Optimization methods applied for Wind–PSP operation and scheduling under deregulated market: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 682-700.
    13. Emmanouil, Stergios & Nikolopoulos, Efthymios I. & François, Baptiste & Brown, Casey & Anagnostou, Emmanouil N., 2021. "Evaluating existing water supply reservoirs as small-scale pumped hydroelectric storage options – A case study in Connecticut," Energy, Elsevier, vol. 226(C).
    14. Taylor, Peter G. & Bolton, Ronan & Stone, Dave & Upham, Paul, 2013. "Developing pathways for energy storage in the UK using a coevolutionary framework," Energy Policy, Elsevier, vol. 63(C), pages 230-243.
    15. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    16. Zubi, Ghassan, 2011. "Technology mix alternatives with high shares of wind power and photovoltaics—case study for Spain," Energy Policy, Elsevier, vol. 39(12), pages 8070-8077.
    17. Sarrias-Mena, Raúl & Fernández-Ramírez, Luis M. & García-Vázquez, Carlos A. & Jurado, Francisco, 2014. "Improving grid integration of wind turbines by using secondary batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 194-207.
    18. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
    19. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    20. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Comprehensive Performance Assessment on Various Battery Energy Storage Systems," Energies, MDPI, vol. 11(10), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:35:y:2014:i:c:p:499-514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.