IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v144y2020ics0301421520303748.html
   My bibliography  Save this article

Stochastic analysis of a shale gas investment strategy for coping with production uncertainties

Author

Listed:
  • Bai, Yang
  • Meng, Jie
  • Meng, Fanyi
  • Fang, Guochang

Abstract

The soaring demand for natural gas and deteriorating environmental conditions in recent years have together created a significant incentive for China to develop shale gas exploration. In this endeavor, production capacity is a major uncertainty that substantially affects the net investment return. We propose a Markov decision process model to explore and determine the desirable investment strategy under such uncertainty. Our model has the advantage of being able to handle dynamic stochastic market states, and it considers not only the value of the project itself (net cash flow) but also the social welfare, environmental cost, and financial subsidy. Our objective is to maximize the long run expected return of investment. The methodology was applied to determine the investment strategy for a case study in China. We found that the project is feasible only when the production capacity is larger than 8.55 billion cubic meters. Additional shale gas supply may generate higher sales revenue. However, the benefits may be neutralized by the decrease in price when domestic demand is inelastic to price. We also found that financial subsidy is an effective incentive for shale gas investment because it significantly increases the expected return of investment.

Suggested Citation

  • Bai, Yang & Meng, Jie & Meng, Fanyi & Fang, Guochang, 2020. "Stochastic analysis of a shale gas investment strategy for coping with production uncertainties," Energy Policy, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:enepol:v:144:y:2020:i:c:s0301421520303748
    DOI: 10.1016/j.enpol.2020.111639
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520303748
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111639?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    2. Manne, Alan S. & Richels, Richard G., 1978. "A decision analysis of the U.S. breeder reactor program," Energy, Elsevier, vol. 3(6), pages 747-767.
    3. Cortazar, Gonzalo & Schwartz, Eduardo S, 1993. "A Compound Option Model of Production and Intermediate Inventories," The Journal of Business, University of Chicago Press, vol. 66(4), pages 517-540, October.
    4. Huang, J.P. & Poh, K.L. & Ang, B.W., 1995. "Decision analysis in energy and environmental modeling," Energy, Elsevier, vol. 20(9), pages 843-855.
    5. Jinoos Hosseini, 1986. "Decision Analysis and Its Application in the Choice Between Two Wildcat Oil Ventures," Interfaces, INFORMS, vol. 16(2), pages 75-85, April.
    6. Tang, Bao-Jun & Zhou, Hui-Ling & Chen, Hao & Wang, Kai & Cao, Hong, 2017. "Investment opportunity in China's overseas oil project: An empirical analysis based on real option approach," Energy Policy, Elsevier, vol. 105(C), pages 17-26.
    7. Michael R. Walls & James S. Dyer, 1996. "Risk Propensity and Firm Performance: A Study of the Petroleum Exploration Industry," Management Science, INFORMS, vol. 42(7), pages 1004-1021, July.
    8. Alan S. Manne, 1974. "Waiting for the Breeder," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 47-65.
    9. Bai, Y. & Zhou, D.Q. & Zhou, P., 2012. "Modelling and analysis of oil import tariff and stockpile policies for coping with supply disruptions," Applied Energy, Elsevier, vol. 97(C), pages 84-90.
    10. Hu, Desheng & Xu, Shengqing, 2013. "Opportunity, challenges and policy choices for China on the development of shale gas," Energy Policy, Elsevier, vol. 60(C), pages 21-26.
    11. Myers, Stewart C., 1977. "Determinants of corporate borrowing," Journal of Financial Economics, Elsevier, vol. 5(2), pages 147-175, November.
    12. William D. Nordhaus, 1973. "The Allocation of Energy Resources," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 4(3), pages 529-576.
    13. Ekern, Steinar, 1988. "An option pricing approach to evaluating petroleum projects," Energy Economics, Elsevier, vol. 10(2), pages 91-99, April.
    14. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    15. Calvo, Jorge Andrés Perdomo & Pérez, Ana María Jaramillo, 2016. "Optimal extraction policy when the environmental and social costs of the opencast coal mining activity are internalized: Mining District of the Department of El Cesar (Colombia) case study," Energy Economics, Elsevier, vol. 59(C), pages 159-166.
    16. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    17. Thomas J. Teisberg, 1981. "A Dynamic Programming Model of the U.S. Strategic Petroleum Reserve," Bell Journal of Economics, The RAND Corporation, vol. 12(2), pages 526-546, Autumn.
    18. Cortazar, Gonzalo & Casassus, Jaime, 1998. "Optimal Timing of a Mine Expansion: Implementing a Real Options Model," The Quarterly Review of Economics and Finance, Elsevier, vol. 38(3, Part 2), pages 755-769.
    19. Dahl, Carol & Sterner, Thomas, 1991. "Analysing gasoline demand elasticities: a survey," Energy Economics, Elsevier, vol. 13(3), pages 203-210, July.
    20. James E. Smith & Kevin F. McCardle, 1999. "Options in the Real World: Lessons Learned in Evaluating Oil and Gas Investments," Operations Research, INFORMS, vol. 47(1), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Yao & Lixin Tian & Guangxi Cao, 2022. "The Information Spillover among the Carbon Market, Energy Market, and Stock Market: A Case Study of China’s Pilot Carbon Markets," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    2. Liu, Haomin & Zhang, Zaixu & Zhang, Tao, 2022. "Shale gas investment decision-making: Green and efficient development under market, technology and environment uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    3. Cai, Zhengyu & Yu, Chin-Hsien & Zhu, Chunhui, 2021. "Government-led urbanization and natural gas demand in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Xi Yang & Alun Gu & Fujie Jiang & Wenli Xie & Qi Wu, 2020. "Integrated Assessment Modeling of China’s Shale Gas Resource: Energy System Optimization, Environmental Cobenefits, and Methane Risk," Energies, MDPI, vol. 14(1), pages 1-24, December.
    5. Wang, Zhaohua & Zhang, Hongzhi & Li, Hao & Wang, Song & Wang, Zhenpo, 2023. "Identifying the key factors to China's unsustainable external circulation through the accounting of the flow of embodied energy and virtual water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Chen, Feng & Wu, Bin & Lou, Wenqian, 2021. "An evolutionary analysis on the effect of government policies on green R & D of photovoltaic industry diffusion in complex network," Energy Policy, Elsevier, vol. 152(C).
    7. Fan, Lurong & Ma, Ning & Zhang, Wen, 2023. "Multi-stakeholder equilibrium-based subsidy allocation mechanism for promoting coalbed methane scale extraction-utilization," Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guedes, José & Santos, Pedro, 2016. "Valuing an offshore oil exploration and production project through real options analysis," Energy Economics, Elsevier, vol. 60(C), pages 377-386.
    2. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Decision analysis in energy and environmental modeling: An update," Energy, Elsevier, vol. 31(14), pages 2604-2622.
    3. Collan, Mikael, 2004. "Giga-Investments: Modelling the Valuation of Very Large Industrial Real Investments," MPRA Paper 4328, University Library of Munich, Germany.
    4. Alain Bensoussan & Benoit Chevalier-Roignant & Alejandro Rivera, 2022. "A model for wind farm management with option interactions," Post-Print hal-04325553, HAL.
    5. Klaus Mohn & Petter Osmundsen, 2011. "Asymmetry and uncertainty in capital formation: an application to oil investment," Applied Economics, Taylor & Francis Journals, vol. 43(28), pages 4387-4401.
    6. Bai, Y. & Dahl, C.A. & Zhou, D.Q. & Zhou, P., 2014. "Stockpile strategy for China׳s emergency oil reserve: A dynamic programming approach," Energy Policy, Elsevier, vol. 73(C), pages 12-20.
    7. Ozorio, Luiz de Magalhães & Bastian-Pinto, Carlos de Lamare & Baidya, Tara Keshar Nanda & Brandão, Luiz Eduardo Teixeira, 2013. "Investment decision in integrated steel plants under uncertainty," International Review of Financial Analysis, Elsevier, vol. 27(C), pages 55-64.
    8. Tjalling C. Koopmans, 1980. "The Transition from Exhaustible to Renewable or Inexhaustible Resources," International Economic Association Series, in: Christopher Bliss & M. Boserup (ed.), Economic Growth and Resources, chapter 1, pages 3-11, Palgrave Macmillan.
    9. Aleksandrov, Nikolay & Espinoza, Raphael & Gyurkó, Lajos, 2013. "Optimal oil production and the world supply of oil," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1248-1263.
    10. Tatiana Ponomarenko & Eugene Marin & Sergey Galevskiy, 2022. "Economic Evaluation of Oil and Gas Projects: Justification of Engineering Solutions in the Implementation of Field Development Projects," Energies, MDPI, vol. 15(9), pages 1-22, April.
    11. Armstrong, Margaret & Langrené, Nicolas & Petter, Renato & Chen, Wen & Petter, Carlos, 2019. "Accounting for tailings dam failures in the valuation of mining projects," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    12. Mikael Collan & Jyrki Savolainen & Pasi Luukka, 2017. "Investigating the effect of price process selection on the value of a metal mining asset portfolio," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 30(2), pages 107-115, July.
    13. Shaton, Katerina, 2015. "Value of Flexibility in Gas Pipeline Investments," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Innovations and Strategies for Logistics and Supply Chains: Technologies, Business Models and Risk Management. Proceedings of the Hamburg Internationa, volume 20, pages 333-357, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    14. James E. Smith, 2005. "Alternative Approaches for Solving Real-Options Problems," Decision Analysis, INFORMS, vol. 2(2), pages 89-102, June.
    15. Nikolay Aleksandrov & Raphael Espinoza, 2011. "Optimal Oil Extraction as a Multiple Real Option," OxCarre Working Papers 064, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    16. Siña, Matías & Guzmán, Juan Ignacio, 2019. "Real option valuation of open pit mines with two processing methods," Journal of Commodity Markets, Elsevier, vol. 13(C), pages 30-39.
    17. Foo, Nam & Bloch, Harry & Salim, Ruhul, 2018. "The optimisation rule for investment in mining projects," Resources Policy, Elsevier, vol. 55(C), pages 123-132.
    18. Haque, Md. Aminul & Topal, Erkan & Lilford, Eric, 2014. "A numerical study for a mining project using real options valuation under commodity price uncertainty," Resources Policy, Elsevier, vol. 39(C), pages 115-123.
    19. Jostein Tvedt, 2022. "Optimal Entry and Exit Decisions Under Uncertainty and the Impact of Mean Reversion," SN Operations Research Forum, Springer, vol. 3(4), pages 1-21, December.
    20. Knaut, Andreas & Madlener, Reinhard & Rosen, Christiane & Vogt, Christian, 2012. "Effects of Temperature Uncertainty on the Valuation of Geothermal Projects: A Real Options Approach," FCN Working Papers 11/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:144:y:2020:i:c:s0301421520303748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.