IDEAS home Printed from https://ideas.repec.org/p/oxf/oxcrwp/064.html
   My bibliography  Save this paper

Optimal Oil Extraction as a Multiple Real Option

Author

Listed:
  • Nikolay Aleksandrov
  • Raphael Espinoza

Abstract

We study optimal oil extraction strategy and the value of an oil field using a multiple real option approach. Extracting a barrel of oil is similar to exercising a call option and optimal strategies lead to deferring production when oil prices are low and when volatility is high. We show that, in theory, the net present value of a country’s oil reserves is increased significantly (by 100 percent, in the most extreme case) if production decisions are made conditional on oil prices. We also show that the marginal value of additional capacity is higher for countries with bigger resources and longer production horizons. We apply the model to Brazil and the U.A.E. in order to pin down two points of the global supply curve.

Suggested Citation

  • Nikolay Aleksandrov & Raphael Espinoza, 2011. "Optimal Oil Extraction as a Multiple Real Option," OxCarre Working Papers 064, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
  • Handle: RePEc:oxf:oxcrwp:064
    as

    Download full text from publisher

    File URL: https://ora.ox.ac.uk/objects/uuid:6ee71357-df1a-42d6-9170-2852dab85b61
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stiglitz, Joseph E & Dasgupta, Partha, 1981. " Market Structure and Resource Extraction under Uncertainty," Scandinavian Journal of Economics, Wiley Blackwell, vol. 83(2), pages 318-333.
    2. René Carmona & Savas Dayanik, 2008. "Optimal Multiple Stopping of Linear Diffusions," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 446-460, May.
    3. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    4. James L. Paddock & Daniel R. Siegel & James L. Smith, 1988. "Option Valuation of Claims on Real Assets: The Case of Offshore Petroleum Leases," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 103(3), pages 479-508.
    5. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    6. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    7. Richard J. Gilbert, 1979. "Optimal Depletion of an Uncertain Stock," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 46(1), pages 47-57.
    8. Octavio A. F. Tourinho., 1979. "The Option Value of Reserves of Natural Resources," Research Program in Finance Working Papers 94, University of California at Berkeley.
    9. Davis, Graham A., 1996. "Real options: Managerial flexibility and strategy in resource allocation : Lenos Trigeorgis The MIT Press, Cambridge, MA, 1996, xiii + 427 pp. (hardcover), ISBN 0-262-20102-X," Resources Policy, Elsevier, vol. 22(3), pages 218-220, September.
    10. L. C. G. Rogers, 2002. "Monte Carlo valuation of American options," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 271-286, July.
    11. Pindyck, Robert S, 1978. "The Optimal Exploration and Production of Nonrenewable Resources," Journal of Political Economy, University of Chicago Press, vol. 86(5), pages 841-861, October.
    12. René Carmona & Nizar Touzi, 2008. "Optimal Multiple Stopping And Valuation Of Swing Options," Mathematical Finance, Wiley Blackwell, vol. 18(2), pages 239-268, April.
    13. Robert M. Solow & Frederic Y. Wan, 1976. "Extraction Costs in the Theory of Exhaustible Resources," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 359-370, Autumn.
    14. Mr. Noureddine Krichene, 2005. "A Simultaneous Equations Model for World Crude Oil and Natural Gas Markets," IMF Working Papers 2005/032, International Monetary Fund.
    15. Olivier Aj Bardou & Sandrine Bouthemy & Gilles Pag`es, 2007. "Optimal quantization for the pricing of swing options," Papers 0705.2110, arXiv.org.
    16. Christophe Barrera-Esteve & Florent Bergeret & Charles Dossal & Emmanuel Gobet & Asma Meziou & Rémi Munos & Damien Reboul-Salze, 2006. "Numerical Methods for the Pricing of Swing Options: A Stochastic Control Approach," Methodology and Computing in Applied Probability, Springer, vol. 8(4), pages 517-540, December.
    17. Myers, Stewart C., 1977. "Determinants of corporate borrowing," Journal of Financial Economics, Elsevier, vol. 5(2), pages 147-175, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksandrov, Nikolay & Espinoza, Raphael & Gyurkó, Lajos, 2013. "Optimal oil production and the world supply of oil," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1248-1263.
    2. Fabio Bertoni & Stefano Lugo, 2013. "Testing the Strategic Asset Allocation of Stabilization Sovereign Wealth Funds," International Finance, Wiley Blackwell, vol. 16(1), pages 95-119, February.
    3. Mr. Nikolay Aleksandrov & Mr. lajos Gyurko & Mr. Raphael A Espinoza, 2012. "Optimal Oil Production and the World Supply of Oil," IMF Working Papers 2012/294, International Monetary Fund.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleksandrov, Nikolay & Espinoza, Raphael & Gyurkó, Lajos, 2013. "Optimal oil production and the world supply of oil," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1248-1263.
    2. Mr. Nikolay Aleksandrov & Mr. lajos Gyurko & Mr. Raphael A Espinoza, 2012. "Optimal Oil Production and the World Supply of Oil," IMF Working Papers 2012/294, International Monetary Fund.
    3. Guedes, José & Santos, Pedro, 2016. "Valuing an offshore oil exploration and production project through real options analysis," Energy Economics, Elsevier, vol. 60(C), pages 377-386.
    4. Lander, Diane M. & Pinches, George E., 1998. "Challenges to the Practical Implementation of Modeling and Valuing Real Options," The Quarterly Review of Economics and Finance, Elsevier, vol. 38(3, Part 2), pages 537-567.
    5. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    6. Marco Antonio Guimaraes Dias & Jose Paulo Teixeira, 2010. "Continuous-Time Option Games: Review of Models and Extensions," Multinational Finance Journal, Multinational Finance Journal, vol. 14(3-4), pages 219-254, September.
    7. Armstrong, Margaret & Langrené, Nicolas & Petter, Renato & Chen, Wen & Petter, Carlos, 2019. "Accounting for tailings dam failures in the valuation of mining projects," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    8. Gérard Gaudet, 2007. "Natural resource economics under the rule of Hotelling," Canadian Journal of Economics, Canadian Economics Association, vol. 40(4), pages 1033-1059, November.
    9. Vicknair, David & Tansey, Michael & O'Brien, Thomas E., 2022. "Measuring fossil fuel reserves: A simulation and review of the U.S. Securities and Exchange Commission approach," Resources Policy, Elsevier, vol. 79(C).
    10. van der Ploeg, Frederick, 2010. "Aggressive oil extraction and precautionary saving: Coping with volatility," Journal of Public Economics, Elsevier, vol. 94(5-6), pages 421-433, June.
    11. Margaret E. Slade & Henry Thille, 2009. "Whither Hotelling: Tests of the Theory of Exhaustible Resources," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 239-259, September.
    12. Thompson, Andrew C., 2001. "The Hotelling Principle, backwardation of futures prices and the values of developed petroleum reserves -- the production constraint hypothesis," Resource and Energy Economics, Elsevier, vol. 23(2), pages 133-156, April.
    13. Postali, Fernando A.S. & Picchetti, Paulo, 2006. "Geometric Brownian Motion and structural breaks in oil prices: A quantitative analysis," Energy Economics, Elsevier, vol. 28(4), pages 506-522, July.
    14. Reynolds, Douglas B., 2013. "Uncertainty in exhaustible natural resource economics: The irreversible sunk costs of Hotelling," Resources Policy, Elsevier, vol. 38(4), pages 532-541.
    15. Slade, Margaret E., 2015. "The rise and fall of an industry: Entry in U.S. copper mining, 1835–1986," Resource and Energy Economics, Elsevier, vol. 42(C), pages 141-169.
    16. Guj, Pietro & Chandra, Atul, 2019. "Comparing different real option valuation approaches as applied to a copper mine," Resources Policy, Elsevier, vol. 61(C), pages 180-189.
    17. Fleten, Stein-Erik & Linnerud, Kristin & Molnár, Peter & Tandberg Nygaard, Maria, 2016. "Green electricity investment timing in practice: Real options or net present value?," Energy, Elsevier, vol. 116(P1), pages 498-506.
    18. Sebastian Maier, 2021. "Re-evaluating natural resource investments under uncertainty: An alternative to limited traditional approaches," Annals of Operations Research, Springer, vol. 299(1), pages 907-937, April.
    19. Young Ryu & Young-Oh Kim & Seung Beom Seo & Il Won Seo, 2018. "Application of real option analysis for planning under climate change uncertainty: a case study for evaluation of flood mitigation plans in Korea," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 803-819, August.
    20. Tang, Bao-Jun & Zhou, Hui-Ling & Chen, Hao & Wang, Kai & Cao, Hong, 2017. "Investment opportunity in China's overseas oil project: An empirical analysis based on real option approach," Energy Policy, Elsevier, vol. 105(C), pages 17-26.

    More about this item

    Keywords

    Oil production ; Real Options ; Capacity Expansion ; Stochastic Optimization;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q30 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - General
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oxf:oxcrwp:064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Melis Boya (email available below). General contact details of provider: https://edirc.repec.org/data/oxcaruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.