IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v142y2020ics030142152030269x.html
   My bibliography  Save this article

Divorce after hundreds of years of marriage: Prospects for coal mining in the Czech Republic with regard to the European Union

Author

Listed:
  • Sivek, Martin
  • Jirásek, Jakub
  • Kavina, Pavel
  • Vojnarová, Markéta
  • Kurková, Tereza
  • Bašová, Andrea

Abstract

Since 2015, the Government of the Czech Republic has adopted some decisions that have altered the prospects for coal mining. In 2015 it adjusted its mineral and energy policy by allowing for lignite to be mined in a part of the North Bohemian Basin that was blocked by a political decision driven by the environmental reasons in 1991. An updated state energy policy came into force in 2015, and the government approved a new Mineral Policy of the Czech Republic in 2017. Based on these new data, it is possible to compare the coal mining concept, energy mix, and energy dependence in the Czech Republic with selected EU Member States, specifically Poland and Germany. The analysis shows that the prospects for coal use in the European Union are not only influenced by the amount of coal production in the EU Member States but also by the amount of coal imported to individual EU countries. It is also anticipated that the future of European coal production will not only be determined by geological, mining technology and economic criteria but rather by the increasingly important role of political decisions.

Suggested Citation

  • Sivek, Martin & Jirásek, Jakub & Kavina, Pavel & Vojnarová, Markéta & Kurková, Tereza & Bašová, Andrea, 2020. "Divorce after hundreds of years of marriage: Prospects for coal mining in the Czech Republic with regard to the European Union," Energy Policy, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:enepol:v:142:y:2020:i:c:s030142152030269x
    DOI: 10.1016/j.enpol.2020.111524
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142152030269X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisher-Vanden, Karen & Jefferson, Gary H. & Liu, Hongmei & Tao, Quan, 2004. "What is driving China's decline in energy intensity?," Resource and Energy Economics, Elsevier, vol. 26(1), pages 77-97, March.
    2. Berthold Rittberger, 2003. "The Creation and Empowerment of the European Parliament," Journal of Common Market Studies, Wiley Blackwell, vol. 41(2), pages 203-225, April.
    3. Lari Shanlang Tiewsoh & Jakub Jirásek & Martin Sivek, 2019. "Electricity Generation in India: Present State, Future Outlook and Policy Implications," Energies, MDPI, vol. 12(7), pages 1-14, April.
    4. Crompton, Paul & Wu, Yanrui, 2005. "Energy consumption in China: past trends and future directions," Energy Economics, Elsevier, vol. 27(1), pages 195-208, January.
    5. Lehotský, Lukáš & Černoch, Filip & Osička, Jan & Ocelík, Petr, 2019. "When climate change is missing: Media discourse on coal mining in the Czech Republic," Energy Policy, Elsevier, vol. 129(C), pages 774-786.
    6. Izabela Jonek-Kowalska, 2017. "Coal mining in Central-East Europe in perspective of industrial risk," Working Papers 42/2017, Institute of Economic Research, revised May 2017.
    7. Izabela Jonek-Kowalska, 2017. "Coal Mining In Central-East Europe In Perspective Of Industrial Risk," Oeconomia Copernicana, Institute of Economic Research, vol. 8(1), pages 131-143, March.
    8. Sivek, Martin & Kavina, Pavel & Jirásek, Jakub, 2019. "New mineral policy of the Czech Republic of June 2017," Resources Policy, Elsevier, vol. 60(C), pages 246-254.
    9. Černoch, Filip & Zapletalová, Veronika, 2015. "Hinkley point C: A new chance for nuclear power plant construction in central Europe?," Energy Policy, Elsevier, vol. 83(C), pages 165-168.
    10. Sivek, Martin & Kavina, Pavel & Jirásek, Jakub & Malečková, Veronika, 2012. "Factors influencing the selection of the past and future strategies for electricity generation in the Czech Republic," Energy Policy, Elsevier, vol. 48(C), pages 650-656.
    11. Garg, Amit & Shukla, P.R., 2009. "Coal and energy security for India: Role of carbon dioxide (CO2) capture and storage (CCS)," Energy, Elsevier, vol. 34(8), pages 1032-1041.
    12. You, C.F. & Xu, X.C., 2010. "Coal combustion and its pollution control in China," Energy, Elsevier, vol. 35(11), pages 4467-4472.
    13. Joas, Fabian & Pahle, Michael & Flachsland, Christian & Joas, Amani, 2016. "Which goals are driving the Energiewende? Making sense of the German Energy Transformation," Energy Policy, Elsevier, vol. 95(C), pages 42-51.
    14. Jan Svejnar, 2002. "Transition Economies: Performance and Challenges," Journal of Economic Perspectives, American Economic Association, vol. 16(1), pages 3-28, Winter.
    15. Manowska, Anna & Osadnik, Katarzyna Tobór & Wyganowska, Małgorzata, 2017. "Economic and social aspects of restructuring Polish coal mining: Focusing on Poland and the EU," Resources Policy, Elsevier, vol. 52(C), pages 192-200.
    16. Chikkatur, Ananth P. & Sagar, Ambuj D. & Sankar, T.L., 2009. "Sustainable development of the Indian coal sector," Energy, Elsevier, vol. 34(8), pages 942-953.
    17. Kiuila, Olga, 2018. "Decarbonisation perspectives for the Polish economy," Energy Policy, Elsevier, vol. 118(C), pages 69-76.
    18. Kavina, Pavel & Jirásek, Jakub & Sivek, Martin, 2009. "Some issues related to the energy sources in the Czech Republic," Energy Policy, Elsevier, vol. 37(6), pages 2139-2142, June.
    19. Lin, Bo-qiang & Liu, Jiang-hua, 2010. "Estimating coal production peak and trends of coal imports in China," Energy Policy, Elsevier, vol. 38(1), pages 512-519, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sivek, Martin & Jirásek, Jakub, 2023. "Coking coal - Really a critical raw material of the European Union?," Resources Policy, Elsevier, vol. 83(C).
    2. Katarzyna Chudy-Laskowska & Tomasz Pisula, 2022. "An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation," Energies, MDPI, vol. 15(19), pages 1-23, October.
    3. Justyna Smagowicz & Cezary Szwed & Dawid Dąbal & Pavel Scholz, 2022. "A Simulation Model of Power Demand Management by Manufacturing Enterprises under the Conditions of Energy Sector Transformation," Energies, MDPI, vol. 15(9), pages 1-27, April.
    4. Iwona Markuszewska, 2021. "The Energy Landscape versus the Farming Landscape: The Immortal Era of Coal?," Energies, MDPI, vol. 14(21), pages 1-23, October.
    5. Marco Quatrosi, 2020. "Analysis of monthly CO2 emission trends for major EU Countries: a time series approach," SEEDS Working Papers 1520, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Nov 2020.
    6. Xinyu Zhuang & Xin Li & Yisong Xu, 2022. "How Can Resource-Exhausted Cities Get Out of “The Valley of Death”? An Evaluation Index System and Obstacle Degree Analysis of Green Sustainable Development," IJERPH, MDPI, vol. 19(24), pages 1-29, December.
    7. Wilhelm Jan Tic & Joanna Guziałowska-Tic, 2021. "The Cost-Efficiency Analysis of a System for Improving Fine-Coal Combustion Efficiency of Power Plant Boilers," Energies, MDPI, vol. 14(14), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Yingmei & Qi, Jianhong & Chen, Xiaoliang, 2011. "The effect of increasing exports on industrial energy intensity in China," Energy Policy, Elsevier, vol. 39(5), pages 2688-2698, May.
    2. Wang, Chengjin & Ducruet, César, 2014. "Transport corridors and regional balance in China: the case of coal trade and logistics," Journal of Transport Geography, Elsevier, vol. 40(C), pages 3-16.
    3. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    4. Chang, Tzu-Pu & Hu, Jin-Li, 2010. "Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China," Applied Energy, Elsevier, vol. 87(10), pages 3262-3270, October.
    5. Li, Sisi & Khan, Sufyan Ullah & Yao, Yao & Chen, George S. & Zhang, Lin & Salim, Ruhul & Huo, Jiaying, 2022. "Estimating the long-run crude oil demand function of China: Some new evidence and policy options," Energy Policy, Elsevier, vol. 170(C).
    6. Feng, Taiwen & Sun, Linyan & Zhang, Ying, 2009. "The relationship between energy consumption structure, economic structure and energy intensity in China," Energy Policy, Elsevier, vol. 37(12), pages 5475-5483, December.
    7. Ma, Hengyun & Oxley, Les & Gibson, John & Kim, Bonggeun, 2008. "China's energy economy: Technical change, factor demand and interfactor/interfuel substitution," Energy Economics, Elsevier, vol. 30(5), pages 2167-2183, September.
    8. Jan Prusa & Andrea Klimesova & Karel Janda, 2013. "Consumer Loss in Czech Photovoltaic Power Plants," CAMA Working Papers 2013-50, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    9. Hang, Leiming & Tu, Meizeng, 2007. "The impacts of energy prices on energy intensity: Evidence from China," Energy Policy, Elsevier, vol. 35(5), pages 2978-2988, May.
    10. Mitavachan Hiremath & Peter Viebahn & Sascha Samadi, 2021. "An Integrated Comparative Assessment of Coal-Based Carbon Capture and Storage (CCS) Vis-à-Vis Renewable Energies in India’s Low Carbon Electricity Transition Scenarios," Energies, MDPI, vol. 14(2), pages 1-28, January.
    11. Ma, Hengyun & Oxley, Les & Gibson, John, 2010. "China's energy economy: A survey of the literature," Economic Systems, Elsevier, vol. 34(2), pages 105-132, June.
    12. Wang, Qiang & Chen, Xi, 2015. "Energy policies for managing China’s carbon emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 470-479.
    13. Gutiérrez-Pedrero, María Jesús & Tarancón, Miguel Ángel & del Río, Pablo & Alcántara, Vicent, 2018. "Analysing the drivers of the intensity of electricity consumption of non-residential sectors in Europe," Applied Energy, Elsevier, vol. 211(C), pages 743-754.
    14. Chengjin Wang & César Ducruet, 2014. "Transport corridors and regional balance in China: the case of coal trade and logistics," Post-Print halshs-01069149, HAL.
    15. Ang, James B., 2009. "CO2 emissions, research and technology transfer in China," Ecological Economics, Elsevier, vol. 68(10), pages 2658-2665, August.
    16. Piotr W. Saługa & Katarzyna Szczepańska-Woszczyna & Radosław Miśkiewicz & Mateusz Chłąd, 2020. "Cost of Equity of Coal-Fired Power Generation Projects in Poland: Its Importance for the Management of Decision-Making Process," Energies, MDPI, vol. 13(18), pages 1-11, September.
    17. Cattaneo, Cristina & Manera, Matteo & Scarpa, Elisa, 2011. "Industrial coal demand in China: A provincial analysis," Resource and Energy Economics, Elsevier, vol. 33(1), pages 12-35, January.
    18. Andrzej Gałaś & Alicja Kot-Niewiadomska & Hubert Czerw & Vladimir Simić & Michael Tost & Linda Wårell & Slávka Gałaś, 2021. "Impact of Covid-19 on the Mining Sector and Raw Materials Security in Selected European Countries," Resources, MDPI, vol. 10(5), pages 1-23, April.
    19. Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
    20. Hao, Yu & Liu, Yiming & Weng, Jia-Hsi & Gao, Yixuan, 2016. "Does the Environmental Kuznets Curve for coal consumption in China exist? New evidence from spatial econometric analysis," Energy, Elsevier, vol. 114(C), pages 1214-1223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:142:y:2020:i:c:s030142152030269x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.