IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v138y2020ics0301421520300100.html
   My bibliography  Save this article

Transmission costs and the value of wind generation for the CREZ project

Author

Listed:
  • Dorsey-Palmateer, Reid

Abstract

This paper analyzes the recent expansion of transmission lines in Texas, essentially completed in 2013 at a cost of approximately $7 billion. This project was intended to improve access to areas with high wind generation potential and the resulting increase in wind generation reduced fuel costs and emissions from the displaced fossil fuel generators. I find that the value of the resulting emissions reduction from additional wind generation is approximately twice that of the fuel savings. Additionally, when incorporating the value of reduced emissions, increased generation from already existing wind turbines alone could offset about half of the annualized cost of this transmission expansion while using only 2% of the new transmission capacity. Incorporating the value of emissions reductions could make extending transmission lines to access high quality wind resources more viable, especially if production from already-existing wind turbines in the area are being non-trivially curtailed, as was true in this case.

Suggested Citation

  • Dorsey-Palmateer, Reid, 2020. "Transmission costs and the value of wind generation for the CREZ project," Energy Policy, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:enepol:v:138:y:2020:i:c:s0301421520300100
    DOI: 10.1016/j.enpol.2020.111248
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520300100
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    2. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2020. "Decompositions and Policy Consequences of an Extraordinary Decline in Air Pollution from Electricity Generation," American Economic Journal: Economic Policy, American Economic Association, vol. 12(4), pages 244-274, November.
    3. Lamy, Julian V. & Jaramillo, Paulina & Azevedo, Inês L. & Wiser, Ryan, 2016. "Should we build wind farms close to load or invest in transmission to access better wind resources in remote areas? A case study in the MISO region," Energy Policy, Elsevier, vol. 96(C), pages 341-350.
    4. Daniel T. Kaffine, Brannin J. McBee, and Jozef Lieskovsky, 2013. "Emissions Savings from Wind Power Generation in Texas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    5. Lucas Davis & Catherine Hausman, 2016. "Market Impacts of a Nuclear Power Plant Closure," American Economic Journal: Applied Economics, American Economic Association, vol. 8(2), pages 92-122, April.
    6. Kevin Novan, 2015. "Valuing the Wind: Renewable Energy Policies and Air Pollution Avoided," American Economic Journal: Economic Policy, American Economic Association, vol. 7(3), pages 291-326, August.
    7. Pindyck, Robert S., 2019. "The social cost of carbon revisited," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 140-160.
    8. Adam E. Clements & A. Stan Hurn & Zili Li, 2017. "The Effect of Transmission Constraints on Electricity Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    9. Wolak, Frank A., 2015. "Measuring the competitiveness benefits of a transmission investment policy: The case of the Alberta electricity market," Energy Policy, Elsevier, vol. 85(C), pages 426-444.
    10. Joseph Cullen, 2013. "Measuring the Environmental Benefits of Wind-Generated Electricity," American Economic Journal: Economic Policy, American Economic Association, vol. 5(4), pages 107-133, November.
    11. Zarnikau, Jay, 2011. "Successful renewable energy development in a competitive electricity market: A Texas case study," Energy Policy, Elsevier, vol. 39(7), pages 3906-3913, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hastings-Simon, Sara & Leach, Andrew & Shaffer, Blake & Weis, Tim, 2022. "Alberta's Renewable Electricity Program: Design, results, and lessons learned," Energy Policy, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Lamp & Mario Samano, 2023. "(Mis)allocation of Renewable Energy Sources," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(1), pages 195-229.
    2. Steven M. Smith, 2019. "The Relative Economic Merits of Alternative Water Rights," Working Papers 2019-08, Colorado School of Mines, Division of Economics and Business.
    3. Brittany Tarufelli & Ben Gilbert, 2019. "Leakage in Regional Climate Policy? Implications of Electricity Market Design," Working Papers 2019-07, Colorado School of Mines, Division of Economics and Business, revised Dec 2021.
    4. LaRiviere, Jacob & Lyu, Xueying, 2022. "Transmission constraints, intermittent renewables and welfare," Journal of Environmental Economics and Management, Elsevier, vol. 112(C).
    5. Brehm, Paul, 2019. "Natural gas prices, electric generation investment, and greenhouse gas emissions," Resource and Energy Economics, Elsevier, vol. 58(C).
    6. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    7. Harrison Fell & Daniel T. Kaffine, 2014. "A one-two punch: Joint effects of natural gas abundance and renewables on coal-fired power plants," Working Papers 2014-10, Colorado School of Mines, Division of Economics and Business.
    8. Erik P. Johnson & Juan Moreno-Cruz, 2020. "Congestion in the Electricity Transmission System Redistributes Pollution across Long Distances," CESifo Working Paper Series 8483, CESifo.
    9. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    10. Lamp, Stefan & Samano, Mario, 2022. "Large-scale battery storage, short-term market outcomes, and arbitrage," Energy Economics, Elsevier, vol. 107(C).
    11. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2019. "Carbon abatement with renewables: Evaluating wind and solar subsidies in Germany and Spain," Journal of Public Economics, Elsevier, vol. 169(C), pages 172-202.
    12. Bahramian, Pejman & Jenkins, Glenn P. & Milne, Frank, 2021. "The displacement impacts of wind power electricity generation: Costly lessons from Ontario," Energy Policy, Elsevier, vol. 152(C).
    13. Gugler, Klaus & Haxhimusa, Adhurim & Liebensteiner, Mario, 2023. "Carbon pricing and emissions: Causal effects of Britain's carbon tax," Energy Economics, Elsevier, vol. 121(C).
    14. Nathaly M Rivera & Cristobal Ruiz Tagle, Elisheba Spiller, 2021. "The Health Benefits of Solar Power Generation: Evidence from Chile," Working Papers, Department of Economics 2021_04, University of São Paulo (FEA-USP).
    15. Concettini, Silvia & Creti, Anna & Gualdi, Stanislao, 2022. "Assessing the regional redistributive effect of renewable power production through a spot market algorithm simulator: The case of Italy," Energy Economics, Elsevier, vol. 114(C).
    16. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    17. Carlini, Federico & Christensen, Bent Jesper & Datta Gupta, Nabanita & Santucci de Magistris, Paolo, 2023. "Climate, wind energy, and CO2 emissions from energy production in Denmark," Energy Economics, Elsevier, vol. 125(C).
    18. Grant Jacobsen, 2016. "Improving Energy Codes," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    19. Holladay, J. Scott & LaRiviere, Jacob, 2017. "The impact of cheap natural gas on marginal emissions from electricity generation and implications for energy policy," Journal of Environmental Economics and Management, Elsevier, vol. 85(C), pages 205-227.
    20. Abrell, Jan & Rausch, Sebastian & Streitberger, Clemens, 2019. "The economics of renewable energy support," Journal of Public Economics, Elsevier, vol. 176(C), pages 94-117.

    More about this item

    Keywords

    Transmission; Wind generation; Renewable generation; CREZ;
    All these keywords.

    JEL classification:

    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:138:y:2020:i:c:s0301421520300100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.