IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v129y2019icp511-520.html
   My bibliography  Save this article

Current and future struggles to eliminate coal

Author

Listed:
  • Zhao, Stephen
  • Alexandroff, Alan

Abstract

Reductions in coal use necessary to meet the objective of keeping global temperature increase well under 2.0 °C faces serious political economic hurdles. To transition from coal, existing use must be eliminated and new growth in coal consumption must be stymied. Efforts to reduce existing consumption in a speedy manner faces challenges in domestically oriented markets where coal industry coalitions resist anti-coal policy and pursue industry protection. In addition, we identify a serious loophole in coal restraint exercised by a number of the users including: China, Japan and Korea. Continued support for coal capacity expansion abroad in both public and private sectors in these markets appears to reflect the lack of incentives, or sanctions in reining in such external capacity expansion. Such external expansion currently is not counted in nationally determined commitments for the Paris Agreement of the United Nations Framework Convention on Climate Change (Paris Agreement). Without greater national political efforts, the necessary reduction in coal use cannot be achieved.

Suggested Citation

  • Zhao, Stephen & Alexandroff, Alan, 2019. "Current and future struggles to eliminate coal," Energy Policy, Elsevier, vol. 129(C), pages 511-520.
  • Handle: RePEc:eee:enepol:v:129:y:2019:i:c:p:511-520
    DOI: 10.1016/j.enpol.2019.02.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519301144
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.02.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin Chick, 2007. "Electricity and Energy Policy in Britain, France and the United States since 1945," Books, Edward Elgar Publishing, number 3650.
    2. Haerer, Drew & Pratson, Lincoln, 2015. "Employment trends in the U.S. Electricity Sector, 2008–2012," Energy Policy, Elsevier, vol. 82(C), pages 85-98.
    3. Evans, Geoff & Phelan, Liam, 2016. "Transition to a post-carbon society: Linking environmental justice and just transition discourses," Energy Policy, Elsevier, vol. 99(C), pages 329-339.
    4. Burke, Paul J., 2013. "The national-level energy ladder and its carbon implications," Environment and Development Economics, Cambridge University Press, vol. 18(4), pages 484-503, August.
    5. Pahle, Michael, 2010. "Germany's dash for coal: Exploring drivers and factors," Energy Policy, Elsevier, vol. 38(7), pages 3431-3442, July.
    6. Wang, Feng & Yin, Haitao & Li, Shoude, 2010. "China's renewable energy policy: Commitments and challenges," Energy Policy, Elsevier, vol. 38(4), pages 1872-1878, April.
    7. Kuramochi, Takeshi, 2015. "Review of energy and climate policy developments in Japan before and after Fukushima," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1320-1332.
    8. Wang, Jianliang & Feng, Lianyong & Davidsson, Simon & Höök, Mikael, 2013. "Chinese coal supply and future production outlooks," Energy, Elsevier, vol. 60(C), pages 204-214.
    9. Ken Koyama, 2013. "Japan's Post-Fukushima Energy Policy Challenges," Asian Economic Policy Review, Japan Center for Economic Research, vol. 8(2), pages 274-293, December.
    10. Bashmakov, Igor, 2007. "Three laws of energy transitions," Energy Policy, Elsevier, vol. 35(7), pages 3583-3594, July.
    11. Middleton, Richard S. & Gupta, Rajan & Hyman, Jeffrey D. & Viswanathan, Hari S., 2017. "The shale gas revolution: Barriers, sustainability, and emerging opportunities," Applied Energy, Elsevier, vol. 199(C), pages 88-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingna Kou & Wei Li & Rui Zhang & Dingxiong Shi, 2023. "Hydrogen as a Transition Tool in a Fossil Fuel Resource Region: Taking China’s Coal Capital Shanxi as an Example," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    2. Wang, Qiang & Song, Xiaoxin, 2021. "Why do China and India burn 60% of the world’s coal? A decomposition analysis from a global perspective," Energy, Elsevier, vol. 227(C).
    3. Breitenstein, Miriam & Anke, Carl-Philipp & Nguyen, Duc Khuong & Walther, Thomas, 2019. "Stranded Asset Risk and Political Uncertainty: The Impact of the Coal Phase-out on the German Coal Industry," MPRA Paper 101763, University Library of Munich, Germany.
    4. Jiang, Wei & Sun, Yifei, 2023. "Which is the more important factor of carbon emission, coal consumption or industrial structure?," Energy Policy, Elsevier, vol. 176(C).
    5. Müller-Hansen, Finn & Lee, Yuan Ting & Callaghan, Max & Jankin, Slava & Minx, Jan C., 2022. "The German coal debate on Twitter: Reactions to a corporate policy process," Energy Policy, Elsevier, vol. 169(C).
    6. Sugandha Srivastav & Ryan Rafaty, 2023. "Political Strategies to Overcome Climate Policy Obstructionism," Papers 2304.14960, arXiv.org.
    7. Oei, Pao-Yu & Hermann, Hauke & Herpich, Philipp & Holtemöller, Oliver & Lünenbürger, Benjamin & Schult, Christoph, 2020. "Coal phase-out in Germany – Implications and policies for affected regions," Energy, Elsevier, vol. 196(C).
    8. Liu, Lan-Cui & Cheng, Lei & Zhao, Lu-Tao & Cao, Ying & Wang, Ce, 2020. "Investigating the significant variation of coal consumption in China in 2002-2017," Energy, Elsevier, vol. 207(C).
    9. Tan, Hao & Thurbon, Elizabeth & Kim, Sung-Young & Mathews, John A., 2021. "Overcoming incumbent resistance to the clean energy shift: How local governments act as change agents in coal power station closures in China," Energy Policy, Elsevier, vol. 149(C).
    10. Aminul Islam & Mohammad Tofayal Ahmed & Md Alam Hossain Mondal & Md. Rabiul Awual & Minhaj Uddin Monir & Kamrul Islam, 2021. "A snapshot of coal‐fired power generation in Bangladesh: A demand–supply outlook," Natural Resources Forum, Blackwell Publishing, vol. 45(2), pages 157-182, May.
    11. Trencher, Gregory & Healy, Noel & Hasegawa, Koichi & Asuka, Jusen, 2019. "Discursive resistance to phasing out coal-fired electricity: Narratives in Japan's coal regime," Energy Policy, Elsevier, vol. 132(C), pages 782-796.
    12. Kühne, Kjell & Bartsch, Nils & Tate, Ryan Driskell & Higson, Julia & Habet, André, 2022. "“Carbon Bombs” - Mapping key fossil fuel projects," Energy Policy, Elsevier, vol. 166(C).
    13. Pashchenko, Dmitry, 2021. "Industrial furnaces with thermochemical waste-heat recuperation by coal gasification," Energy, Elsevier, vol. 221(C).
    14. Francesco Facchinelli & Salvatore Eugenio Pappalardo & Daniele Codato & Alberto Diantini & Giuseppe Della Fera & Edoardo Crescini & Massimo De Marchi, 2019. "Unburnable and Unleakable Carbon in Western Amazon: Using VIIRS Nightfire Data to Map Gas Flaring and Policy Compliance in the Yasuní Biosphere Reserve," Sustainability, MDPI, vol. 12(1), pages 1-26, December.
    15. Robi Kurniawan & Gregory P. Trencher & Achmed S. Edianto & Imam E. Setiawan & Kazuyo Matsubae, 2020. "Understanding the Multi-Faceted Drivers of Increasing Coal Consumption in Indonesia," Energies, MDPI, vol. 13(14), pages 1-22, July.
    16. Jarosław Kaczmarek, 2022. "The Balance of Outlays and Effects of Restructuring Hard Coal Mining Companies in Terms of Energy Policy of Poland PEP 2040," Energies, MDPI, vol. 15(5), pages 1-30, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rohan Best & Paul J. Burke, 2020. "Energy mix persistence and the effect of carbon pricing," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), pages 555-574, July.
    2. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
    3. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    4. Osorio, Sebastian & Pietzcker, Robert C. & Pahle, Michael & Edenhofer, Ottmar, 2020. "How to deal with the risks of phasing out coal in Germany," Energy Economics, Elsevier, vol. 87(C).
    5. Stua, Michele, 2013. "Evidence of the clean development mechanism impact on the Chinese electric power system's low-carbon transition," Energy Policy, Elsevier, vol. 62(C), pages 1309-1319.
    6. Qi, Ye & Stern, Nicholas & Wu, Tong & Lu, Jiaqi & Green, Fergus, 2016. "China's post-coal growth," LSE Research Online Documents on Economics 67503, London School of Economics and Political Science, LSE Library.
    7. Anjum, Zeba & Burke, Paul J. & Gerlagh, Reyer & Stern, David I., "undated". "Modeling the Emissions-Income Relationship Using Long-Run Growth Rates," Working Papers 249422, Australian National University, Centre for Climate Economics & Policy.
    8. Jin, Xin & Zhang, Zhaolong & Shi, Xiaoqiang & Ju, Wenbin, 2014. "A review on wind power industry and corresponding insurance market in China: Current status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1069-1082.
    9. Burke, Paul J. & Yang, Hewen, 2016. "The price and income elasticities of natural gas demand: International evidence," Energy Economics, Elsevier, vol. 59(C), pages 466-474.
    10. repec:dui:wpaper:1504 is not listed on IDEAS
    11. Meng, Ming & Niu, Dongxiao, 2011. "Modeling CO2 emissions from fossil fuel combustion using the logistic equation," Energy, Elsevier, vol. 36(5), pages 3355-3359.
    12. Zeng, Ming & Li, Chen & Zhou, Lisha, 2013. "Progress and prospective on the police system of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 36-44.
    13. Geels, Frank W. & Kern, Florian & Fuchs, Gerhard & Hinderer, Nele & Kungl, Gregor & Mylan, Josephine & Neukirch, Mario & Wassermann, Sandra, 2016. "The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014)," Research Policy, Elsevier, vol. 45(4), pages 896-913.
    14. Li, Aitong & Xu, Yuan & Shiroyama, Hideaki, 2019. "Solar lobby and energy transition in Japan," Energy Policy, Elsevier, vol. 134(C).
    15. Wang, Jianliang & Feng, Lianyong & Steve, Mohr & Tang, Xu & Gail, Tverberg E. & Mikael, Höök, 2015. "China's unconventional oil: A review of its resources and outlook for long-term production," Energy, Elsevier, vol. 82(C), pages 31-42.
    16. Judith Clifton & Pierre Lanthier & Harm Schröter, 2011. "Regulating and deregulating the public utilities 1830--2010," Business History, Taylor & Francis Journals, vol. 53(5), pages 659-672, August.
    17. Zsuzsanna Csereklyei, M. d. Mar Rubio-Varas, and David I. Stern, 2016. "Energy and Economic Growth: The Stylized Facts," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    18. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.
    19. Mohamed Mehana & Fangxuan Chen & Mashhad Fahes & Qinjun Kang & Hari Viswanathan, 2022. "Geochemical Modelling of the Fracturing Fluid Transport in Shale Reservoirs," Energies, MDPI, vol. 15(22), pages 1-13, November.
    20. Zhang, Shuo & Song, Shengyuan & Zhang, Wen & Zhao, Jinmin & Cao, Dongfang & Ma, Wenliang & Chen, Zijian & Hu, Ying, 2023. "Research on the inherent mechanism of rock mass deformation of oil shale in-situ mining under the condition of thermal-fluid-solid coupling," Energy, Elsevier, vol. 280(C).
    21. Blankenship, Brian & Aklin, Michaël & Urpelainen, Johannes & Nandan, Vagisha, 2022. "Jobs for a just transition: Evidence on coal job preferences from India," Energy Policy, Elsevier, vol. 165(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:129:y:2019:i:c:p:511-520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.