IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v199y2017icp88-95.html
   My bibliography  Save this article

The shale gas revolution: Barriers, sustainability, and emerging opportunities

Author

Listed:
  • Middleton, Richard S.
  • Gupta, Rajan
  • Hyman, Jeffrey D.
  • Viswanathan, Hari S.

Abstract

Shale gas and hydraulic refracturing has revolutionized the US energy sector in terms of prices, consumption, and CO2 emissions. However, key questions remain including environmental concerns and extraction efficiencies that are leveling off. For the first time, we identify key discoveries, lessons learned, and recommendations from this shale gas revolution through extensive data mining and analysis of 23years of production from 20,000 wells. Discoveries include identification of a learning-by-doing process where disruptive technology innovation led to a doubling in shale gas extraction, how refracturing with emerging technologies can transform existing wells, and how overall shale gas production is actually dominated by long-term tail production rather than the high-profile initial exponentially-declining production in the first 12months. We hypothesize that tail production can be manipulated, through better fracturing techniques and alternative working fluids such as CO2, to increase shale gas recovery and minimize environmental impacts such as through carbon sequestration.

Suggested Citation

  • Middleton, Richard S. & Gupta, Rajan & Hyman, Jeffrey D. & Viswanathan, Hari S., 2017. "The shale gas revolution: Barriers, sustainability, and emerging opportunities," Applied Energy, Elsevier, vol. 199(C), pages 88-95.
  • Handle: RePEc:eee:appene:v:199:y:2017:i:c:p:88-95
    DOI: 10.1016/j.apenergy.2017.04.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917304312
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.04.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paltsev, Sergey & Jacoby, Henry D. & Reilly, John M. & Ejaz, Qudsia J. & Morris, Jennifer & O'Sullivan, Francis & Rausch, Sebastian & Winchester, Niven & Kragha, Oghenerume, 2011. "The future of U.S. natural gas production, use, and trade," Energy Policy, Elsevier, vol. 39(9), pages 5309-5321, September.
    2. Aguilera, Roberto F., 2014. "The role of natural gas in a low carbon Asia Pacific," Applied Energy, Elsevier, vol. 113(C), pages 1795-1800.
    3. Eleanor Andrews & James McCarthy, 2014. "Scale, shale, and the state: political ecologies and legal geographies of shale gas development in Pennsylvania," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(1), pages 7-16, March.
    4. Arora, Vipin & Cai, Yiyong, 2014. "U.S. natural gas exports and their global impacts," Applied Energy, Elsevier, vol. 120(C), pages 95-103.
    5. Kim, Tae Hong & Cho, Jinhyung & Lee, Kun Sang, 2017. "Evaluation of CO2 injection in shale gas reservoirs with multi-component transport and geomechanical effects," Applied Energy, Elsevier, vol. 190(C), pages 1195-1206.
    6. Wang, Zhongmin & Krupnick, Alan, 2013. "A Retrospective Review of Shale Gas Development in the United States: What Led to the Boom?," RFF Working Paper Series dp-13-12, Resources for the Future.
    7. David Koranyi, 2016. "The strategic role of the US in European energy security," Nature Energy, Nature, vol. 1(10), pages 1-2, October.
    8. Robert W. Howarth & Anthony Ingraffea & Terry Engelder, 2011. "Should fracking stop?," Nature, Nature, vol. 477(7364), pages 271-275, September.
    9. Chang, Yuan & Huang, Runze & Ries, Robert J. & Masanet, Eric, 2014. "Shale-to-well energy use and air pollutant emissions of shale gas production in China," Applied Energy, Elsevier, vol. 125(C), pages 147-157.
    10. Robert C. Armstrong & Catherine Wolfram & Krijn P. de Jong & Robert Gross & Nathan S. Lewis & Brenda Boardman & Arthur J. Ragauskas & Karen Ehrhardt-Martinez & George Crabtree & M. V. Ramana, 2016. "The frontiers of energy," Nature Energy, Nature, vol. 1(1), pages 1-8, January.
    11. David L. McCollum & Jessica Jewell & Volker Krey & Morgan Bazilian & Marianne Fay & Keywan Riahi, 2016. "Quantifying uncertainties influencing the long-term impacts of oil prices on energy markets and carbon emissions," Nature Energy, Nature, vol. 1(7), pages 1-8, July.
    12. Hammond, Geoffrey P. & O’Grady, Áine, 2017. "Indicative energy technology assessment of UK shale gas extraction," Applied Energy, Elsevier, vol. 185(P2), pages 1907-1918.
    13. J. David Hughes, 2013. "A reality check on the shale revolution," Nature, Nature, vol. 494(7437), pages 307-308, February.
    14. Weijermars, Ruud, 2013. "Economic appraisal of shale gas plays in Continental Europe," Applied Energy, Elsevier, vol. 106(C), pages 100-115.
    15. Yuan, Jiehui & Luo, Dongkun & Feng, Lianyong, 2015. "A review of the technical and economic evaluation techniques for shale gas development," Applied Energy, Elsevier, vol. 148(C), pages 49-65.
    16. Middleton, Richard S. & Carey, J. William & Currier, Robert P. & Hyman, Jeffrey D. & Kang, Qinjun & Karra, Satish & Jiménez-Martínez, Joaquín & Porter, Mark L. & Viswanathan, Hari S., 2015. "Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2," Applied Energy, Elsevier, vol. 147(C), pages 500-509.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yuntian & Jiang, Su & Zhang, Dongxiao & Liu, Chaoyang, 2017. "An adsorbed gas estimation model for shale gas reservoirs via statistical learning," Applied Energy, Elsevier, vol. 197(C), pages 327-341.
    2. Middleton, Richard S. & Carey, J. William & Currier, Robert P. & Hyman, Jeffrey D. & Kang, Qinjun & Karra, Satish & Jiménez-Martínez, Joaquín & Porter, Mark L. & Viswanathan, Hari S., 2015. "Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2," Applied Energy, Elsevier, vol. 147(C), pages 500-509.
    3. Huang, Liang & Ning, Zhengfu & Wang, Qing & Zhang, Wentong & Cheng, Zhilin & Wu, Xiaojun & Qin, Huibo, 2018. "Effect of organic type and moisture on CO2/CH4 competitive adsorption in kerogen with implications for CO2 sequestration and enhanced CH4 recovery," Applied Energy, Elsevier, vol. 210(C), pages 28-43.
    4. Zou, Youqin & Yang, Changbing & Wu, Daishe & Yan, Chun & Zeng, Masun & Lan, Yingying & Dai, Zhenxue, 2016. "Probabilistic assessment of shale gas production and water demand at Xiuwu Basin in China," Applied Energy, Elsevier, vol. 180(C), pages 185-195.
    5. Chi Kong Chyong and David M. Reiner, 2015. "Economics and Politics of Shale Gas in Europe," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    6. Gong, Jianming & Qiu, Zhen & Zou, Caineng & Wang, Hongyan & Shi, Zhensheng, 2020. "An integrated assessment system for shale gas resources associated with graptolites and its application," Applied Energy, Elsevier, vol. 262(C).
    7. Philipp M. Richter, 2015. "From Boom to Bust? A Critical Look at US Shale Gas Projections," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    8. Yuan, Jiehui & Luo, Dongkun & Xia, Liangyu & Feng, Lianyong, 2015. "Policy recommendations to promote shale gas development in China based on a technical and economic evaluation," Energy Policy, Elsevier, vol. 85(C), pages 194-206.
    9. Yang, Run & Liu, Xiangui & Yu, Rongze & Hu, Zhiming & Duan, Xianggang, 2022. "Long short-term memory suggests a model for predicting shale gas production," Applied Energy, Elsevier, vol. 322(C).
    10. Wang, Hui & Chen, Li & Qu, Zhiguo & Yin, Ying & Kang, Qinjun & Yu, Bo & Tao, Wen-Quan, 2020. "Modeling of multi-scale transport phenomena in shale gas production — A critical review," Applied Energy, Elsevier, vol. 262(C).
    11. Knudsen, Brage Rugstad & Foss, Bjarne, 2017. "Shale-gas wells as virtual storage for supporting intermittent renewables," Energy Policy, Elsevier, vol. 102(C), pages 142-144.
    12. Yuan, Jiehui & Luo, Dongkun & Feng, Lianyong, 2015. "A review of the technical and economic evaluation techniques for shale gas development," Applied Energy, Elsevier, vol. 148(C), pages 49-65.
    13. Huang, Jingwei & Jin, Tianying & Barrufet, Maria & Killough, John, 2020. "Evaluation of CO2 injection into shale gas reservoirs considering dispersed distribution of kerogen," Applied Energy, Elsevier, vol. 260(C).
    14. Ahn, Yuchan & Kim, Junghwan & Kwon, Joseph Sang-Il, 2020. "Optimal design of supply chain network with carbon dioxide injection for enhanced shale gas recovery," Applied Energy, Elsevier, vol. 274(C).
    15. Zhao‐Zhong Yang & Liang‐Ping Yi & Xiao‐Gang Li & Yu Li & Min Jia, 2018. "Phase control of downhole fluid during supercritical carbon dioxide fracturing," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 1079-1089, December.
    16. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.
    17. Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
    18. De Silva, P.N.K. & Simons, S.J.R. & Stevens, P., 2016. "Economic impact analysis of natural gas development and the policy implications," Energy Policy, Elsevier, vol. 88(C), pages 639-651.
    19. Jin, Xu & Wang, Xiaoqi & Yan, Weipeng & Meng, Siwei & Liu, Xiaodan & Jiao, Hang & Su, Ling & Zhu, Rukai & Liu, He & Li, Jianming, 2019. "Exploration and casting of large scale microscopic pathways for shale using electrodeposition," Applied Energy, Elsevier, vol. 247(C), pages 32-39.
    20. Kim, Tae Hong & Cho, Jinhyung & Lee, Kun Sang, 2017. "Evaluation of CO2 injection in shale gas reservoirs with multi-component transport and geomechanical effects," Applied Energy, Elsevier, vol. 190(C), pages 1195-1206.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:199:y:2017:i:c:p:88-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.