IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/67503.html
   My bibliography  Save this paper

China's post-coal growth

Author

Listed:
  • Qi, Ye
  • Stern, Nicholas
  • Wu, Tong
  • Lu, Jiaqi
  • Green, Fergus

Abstract

Slowing GDP growth, a structural shift away from heavy industry, and more proactive policies on air pollution and clean energy have caused China's coal use to peak. It seems that economic growth has decoupled from growth in coal consumption.

Suggested Citation

  • Qi, Ye & Stern, Nicholas & Wu, Tong & Lu, Jiaqi & Green, Fergus, 2016. "China's post-coal growth," LSE Research Online Documents on Economics 67503, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:67503
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/67503/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jianliang & Feng, Lianyong & Davidsson, Simon & Höök, Mikael, 2013. "Chinese coal supply and future production outlooks," Energy, Elsevier, vol. 60(C), pages 204-214.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Junyi & Teng, Fei & Zhou, Shaojie, 2020. "The structural changes and determinants of household energy choices and energy consumption in urban China: Addressing the role of building type," Energy Policy, Elsevier, vol. 139(C).
    2. Wang, Ce & Li, Bing-Bing & Liang, Qiao-Mei & Wang, Jin-Cheng, 2018. "Has China’s coal consumption already peaked? A demand-side analysis based on hybrid prediction models," Energy, Elsevier, vol. 162(C), pages 272-281.
    3. Kokorin, Alexey O. (Кокорин, Алексей) & Potashnikov, Vladimir Yu. (Поташников, Владимир), 2018. "Global Low Carbon Trend of Development as a Driving Force for Paris Agreement Implementation [Глобальный Низкоуглеродный Тренд Развития Как Движущая Сила Реализации Парижского Соглашения]," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 3, pages 234-255, June.
    4. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    5. Zhang, Xi & Geng, Yong & Shao, Shuai & Wilson, Jeffrey & Song, Xiaoqian & You, Wei, 2020. "China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization," Applied Energy, Elsevier, vol. 261(C).
    6. Zhou, Yanlai & Guo, Shenglian & Chang, Fi-John & Xu, Chong-Yu, 2018. "Boosting hydropower output of mega cascade reservoirs using an evolutionary algorithm with successive approximation," Applied Energy, Elsevier, vol. 228(C), pages 1726-1739.
    7. Maulidia, Martha & Dargusch, Paul & Ashworth, Peta & Ardiansyah, Fitrian, 2019. "Rethinking renewable energy targets and electricity sector reform in Indonesia: A private sector perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 231-247.
    8. Lin, Jiang & Fridley, David & Lu, Hongyou & Price, Lynn & Zhou, Nan, 2018. "Has coal use peaked in China: Near-term trends in China's coal consumption," Energy Policy, Elsevier, vol. 123(C), pages 208-214.
    9. Meng, Bo & Wang, Jianguo & Andrew, Robbie & Xiao, Hao & Xue, Jinjun & Peters, Glen P., 2017. "Spatial spillover effects in determining China's regional CO2 emissions growth: 2007–2010," Energy Economics, Elsevier, vol. 63(C), pages 161-173.
    10. Wei, Xinyang & Tong, Qing & Magill, Iain & Vithayasrichareon, Peerapat & Betz, Regina, 2020. "Evaluation of potential co-benefits of air pollution control and climate mitigation policies for China's electricity sector," Energy Economics, Elsevier, vol. 92(C).
    11. Guo, Jin & Du, Limin & Wei, Chu, 2019. "Equity-efficiency trade-off in China's energy capping policy," Energy Policy, Elsevier, vol. 126(C), pages 57-65.
    12. Wang, Ning & Shen, Ruifang & Wen, Zongguo & De Clercq, Djavan, 2019. "Life cycle energy efficiency evaluation for coal development and utilization," Energy, Elsevier, vol. 179(C), pages 1-11.
    13. Wang, Qiang & Song, Xiaoxin, 2021. "How UK farewell to coal – Insight from multi-regional input-output and logarithmic mean divisia index analysis," Energy, Elsevier, vol. 229(C).
    14. Xu, Jiuping & Huang, Qian & Lv, Chengwei & Feng, Qing & Wang, Fengjuan, 2018. "Carbon emissions reductions oriented dynamic equilibrium strategy using biomass-coal co-firing," Energy Policy, Elsevier, vol. 123(C), pages 184-197.
    15. Mathieu Blondeel & Thijs Van de Graaf, 2018. "Toward a global coal mining moratorium? A comparative analysis of coal mining policies in the USA, China, India and Australia," Climatic Change, Springer, vol. 150(1), pages 89-101, September.
    16. Grimoux, Valentin, 2018. "China’s Energy Policy & Investments and their Impact on the Sub-Saharan African Region," ESP: Energy Scenarios and Policy 276177, Fondazione Eni Enrico Mattei (FEEM).
    17. Zheng, Heran & Shan, Yuli & Mi, Zhifu & Meng, Jing & Ou, Jiamin & Schroeder, Heike & Guan, Dabo, 2018. "How modifications of China's energy data affect carbon mitigation targets," Energy Policy, Elsevier, vol. 116(C), pages 337-343.
    18. Lei Liu & Tong Wu & Ziqianhong Wan, 2019. "The EU-China relationship in a new era of global climate governance," Asia Europe Journal, Springer, vol. 17(2), pages 243-254, June.
    19. Wang, Chengdong & Wang, Yutao & Tong, Xin & Ulgiati, Sergio & Liang, Sai & Xu, Ming & Wei, Wendong & Li, Xiao & Jin, Mingzhou & Mao, Jiafu, 2020. "Mapping potentials and bridging regional gaps of renewable resources in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Ritchie, Justin & Dowlatabadi, Hadi, 2017. "Why do climate change scenarios return to coal?," Energy, Elsevier, vol. 140(P1), pages 1276-1291.
    21. Li, Yiming & Li, Changqing, 2019. "Fossil energy subsidies in China's modern coal chemical industry," Energy Policy, Elsevier, vol. 135(C).
    22. Dong, Changgui & Qi, Ye & Dong, Wenjuan & Lu, Xi & Liu, Tianle & Qian, Shuai, 2018. "Decomposing driving factors for wind curtailment under economic new normal in China," Applied Energy, Elsevier, vol. 217(C), pages 178-188.
    23. Valentin Grimoux, 2018. "China’s Energy Policy & Investments and their Impact on the Sub-Saharan African Region," Working Papers 2018.27, Fondazione Eni Enrico Mattei.
    24. Kejia Yang & Ralitsa Hiteva & Johan Schot, 2020. "Niche Acceleration driven by Expectation Dynamics among Niche and Regime Actors: China’s Wind and Solar Power Development," SPRU Working Paper Series 2020-03, SPRU - Science Policy Research Unit, University of Sussex Business School.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jianliang & Feng, Lianyong & Steve, Mohr & Tang, Xu & Gail, Tverberg E. & Mikael, Höök, 2015. "China's unconventional oil: A review of its resources and outlook for long-term production," Energy, Elsevier, vol. 82(C), pages 31-42.
    2. Xinlin Zhang & Yuan Zhao & Qi Sun & Changjian Wang, 2017. "Decomposition and Attribution Analysis of Industrial Carbon Intensity Changes in Xinjiang, China," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    3. Jiang, Xu & Xu, Jun & He, Qichen & Wang, Cong & Jiang, Long & Xu, Kai & Wang, Yi & Su, Sheng & Hu, Song & Du, Zhenyi & Xiang, Jun, 2023. "A study of the relationships between coal heterogeneous chemical structure and pyrolysis behaviours: Mechanism and predicting model," Energy, Elsevier, vol. 282(C).
    4. Xu, Xin & You, Shijun & Zheng, Xuejing & Li, Han, 2014. "A survey of district heating systems in the heating regions of northern China," Energy, Elsevier, vol. 77(C), pages 909-925.
    5. Zhu, Ying & Yan, Xiaxia & Chen, Cong & Li, Yongping & Huang, Guohe & Li, Yexin, 2019. "Analysis of industry-air quality control in ecologically fragile coal-dependent cities by an uncertain Gaussian diffusion-Hurwicz criterion model," Energy Policy, Elsevier, vol. 132(C), pages 1191-1205.
    6. Zhang, Yujiang & Feng, Guorui & Zhang, Min & Ren, Hongrui & Bai, Jinwen & Guo, Yuxia & Jiang, Haina & Kang, Lixun, 2016. "Residual coal exploitation and its impact on sustainable development of the coal industry in China," Energy Policy, Elsevier, vol. 96(C), pages 534-541.
    7. Wang, Delu & Wan, Kaidi & Song, Xuefeng, 2020. "Understanding coal miners’ livelihood vulnerability to declining coal demand: Negative impact and coping strategies," Energy Policy, Elsevier, vol. 138(C).
    8. Huang, Yi & Yi, Qun & Wei, Guo-qiang & Kang, Jing-xian & Li, Wen-ying & Feng, Jie & Xie, Ke-chang, 2018. "Energy use, greenhouse gases emission and cost effectiveness of an integrated high– and low–temperature Fisher–Tropsch synthesis plant from a lifecycle viewpoint," Applied Energy, Elsevier, vol. 228(C), pages 1009-1019.
    9. Li, Wei & Younger, Paul L. & Cheng, Yuanping & Zhang, Baoyong & Zhou, Hongxing & Liu, Qingquan & Dai, Tao & Kong, Shengli & Jin, Kan & Yang, Quanlin, 2015. "Addressing the CO2 emissions of the world's largest coal producer and consumer: Lessons from the Haishiwan Coalfield, China," Energy, Elsevier, vol. 80(C), pages 400-413.
    10. Song, Yunting & Wang, Nuo, 2019. "Exploring temporal and spatial evolution of global coal supply-demand and flow structure," Energy, Elsevier, vol. 168(C), pages 1073-1080.
    11. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2015. "Prospects of carbon capture and storage (CCS) in China’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 157(C), pages 229-244.
    12. Zhao, Stephen & Alexandroff, Alan, 2019. "Current and future struggles to eliminate coal," Energy Policy, Elsevier, vol. 129(C), pages 511-520.
    13. Chen, Yi-Feng & Su, Sheng & Zhang, Liang-Ping & Jiang, Long & Qing, Meng-Xia & Chi, Huan-Ying & Ling, Peng & Han, Heng-Da & Xu, Kai & Wang, Yi & Hu, Song & Xiang, Jun, 2021. "Insights into evolution mechanism of PAHs in coal thermal conversion: A combined experimental and DFT study," Energy, Elsevier, vol. 222(C).
    14. Valentin Grimoux, 2018. "China’s Energy Policy & Investments and their Impact on the Sub-Saharan African Region," Working Papers 2018.27, Fondazione Eni Enrico Mattei.
    15. Grimoux, Valentin, 2018. "China’s Energy Policy & Investments and their Impact on the Sub-Saharan African Region," ESP: Energy Scenarios and Policy 276177, Fondazione Eni Enrico Mattei (FEEM).
    16. Ritchie, Justin & Dowlatabadi, Hadi, 2017. "The 1000 GtC coal question: Are cases of vastly expanded future coal combustion still plausible?," Energy Economics, Elsevier, vol. 65(C), pages 16-31.
    17. Wang, Delu & Wan, Kaidi & Song, Xuefeng, 2018. "Coal miners’ livelihood vulnerability to economic shock: Multi-criteria assessment and policy implications," Energy Policy, Elsevier, vol. 114(C), pages 301-314.
    18. Jie, Dingfei & Xu, Xiangyang & Guo, Fei, 2021. "The future of coal supply in China based on non-fossil energy development and carbon price strategies," Energy, Elsevier, vol. 220(C).
    19. Li, Ying & Chiu, Yung-ho & Lin, Tai-Yu, 2019. "Coal production efficiency and land destruction in China's coal mining industry," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    20. Wang, Jianliang & Guo, Meiyu & Liu, Mingming & Wei, Xinqiang, 2020. "Long-term outlook for global rare earth production," Resources Policy, Elsevier, vol. 65(C).

    More about this item

    Keywords

    Climate-change mitigation; Energy efficiency; Energy supply and demand; Sustainability;
    All these keywords.

    JEL classification:

    • N0 - Economic History - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:67503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.