IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v168y2019icp1073-1080.html
   My bibliography  Save this article

Exploring temporal and spatial evolution of global coal supply-demand and flow structure

Author

Listed:
  • Song, Yunting
  • Wang, Nuo

Abstract

This paper studies the temporal and spatial evolution of the flow structure of world coal resources in 1990–2016 and explores reasons of the evolution. From the perspective of the “resources field” theory, the coal flow from the sources of the flow field with high-potential to the destinations of the flow field with low-potential through intensive shipping routes. In 2016, the number of coal shipping routes increased significantly compared with 1990, and the transport volumes also increased significantly. The main factors that motivate coal resource flowing around the world are resource spatial distributions, supply-demand matching degrees, space distances, market factors and national policies etc. In the complex supply-demand structure of coal resources, establishing good rules and order for international coal trade and enhancing the reliability and smoothness of maritime transportation corridors is very important for the maintenance of world economic security.

Suggested Citation

  • Song, Yunting & Wang, Nuo, 2019. "Exploring temporal and spatial evolution of global coal supply-demand and flow structure," Energy, Elsevier, vol. 168(C), pages 1073-1080.
  • Handle: RePEc:eee:energy:v:168:y:2019:i:c:p:1073-1080
    DOI: 10.1016/j.energy.2018.11.144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218323557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.11.144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zaklan, Aleksandar & Cullmann, Astrid & Neumann, Anne & von Hirschhausen, Christian, 2012. "The globalization of steam coal markets and the role of logistics: An empirical analysis," Energy Economics, Elsevier, vol. 34(1), pages 105-116.
    2. Paulus, Moritz & Trüby, Johannes, 2011. "Coal lumps vs. electrons: How do Chinese bulk energy transport decisions affect the global steam coal market?," Energy Economics, Elsevier, vol. 33(6), pages 1127-1137.
    3. He, Yongda & Lin, Boqiang, 2018. "Forecasting China's total energy demand and its structure using ADL-MIDAS model," Energy, Elsevier, vol. 151(C), pages 420-429.
    4. Chengjin Wang & César Ducruet, 2014. "Transport corridors and regional balance in China: the case of coal trade and logistics," Post-Print halshs-01069149, HAL.
    5. Rioux, Bertrand & Galkin, Philipp & Murphy, Frederic & Pierru, Axel, 2016. "Economic impacts of debottlenecking congestion in the Chinese coal supply chain," Energy Economics, Elsevier, vol. 60(C), pages 387-399.
    6. Yuhuan Sun & Qian Li & Ting Chen & Xiaoai Jia, 2015. "Dynamic Factor Analysis of Trends in Temporal–Spatial Patterns of China’s Coal Consumption," Sustainability, MDPI, vol. 7(11), pages 1-17, November.
    7. Lin, Bo-qiang & Liu, Jiang-hua, 2010. "Estimating coal production peak and trends of coal imports in China," Energy Policy, Elsevier, vol. 38(1), pages 512-519, January.
    8. Roman Mendelevitch, 2018. "Testing supply-side climate policies for the global steam coal market—can they curb coal consumption?," Climatic Change, Springer, vol. 150(1), pages 57-72, September.
    9. Mou, Dunguo & Li, Zhi, 2012. "A spatial analysis of China's coal flow," Energy Policy, Elsevier, vol. 48(C), pages 358-368.
    10. Zhao, Yuan & Hao, Li-Sha & Wan, Lu, 2007. "Research on the spatial structure of crude oil flow and the characteristics of its flow field in China," Energy Policy, Elsevier, vol. 35(10), pages 5035-5050, October.
    11. Wang, Chengjin & Ducruet, César, 2014. "Transport corridors and regional balance in China: the case of coal trade and logistics," Journal of Transport Geography, Elsevier, vol. 40(C), pages 3-16.
    12. Wang, Jianliang & Feng, Lianyong & Davidsson, Simon & Höök, Mikael, 2013. "Chinese coal supply and future production outlooks," Energy, Elsevier, vol. 60(C), pages 204-214.
    13. Chengjin Wang & César Ducruet, 2014. "Transport corridors and regional balance in China : The case of coal trade and logistics," Post-Print hal-03246955, HAL.
    14. Warell, Linda, 2005. "Defining geographic coal markets using price data and shipments data," Energy Policy, Elsevier, vol. 33(17), pages 2216-2230, November.
    15. Wang, Wenwen & Zhang, Ming & Li, Peng, 2014. "Exploring temporal and spatial evolution of global energy production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 943-949.
    16. Sahar Babri & Kurt Jørnsten & Michael Viertel, 2017. "Application of gravity models with a fixed component in the international trade flows of coal, iron ore and crude oil," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 334-351, June.
    17. Ekawan, Rudianto & Duchene, Michel & Goetz, Damien, 2006. "The evolution of hard coal trade in the Pacific market," Energy Policy, Elsevier, vol. 34(14), pages 1853-1866, September.
    18. Ekawan, Rudianto & Duchene, Michel, 2006. "The evolution of hard coal trade in the Atlantic market," Energy Policy, Elsevier, vol. 34(13), pages 1487-1498, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thuan Duc Mai & Tamás Koós & Emese Sebe & Zoltán Siménfalvi & András Arnold Kállay, 2023. "Efficiency Enhancement of the Single Line Multi-Stage Gasification of Hungarian Low-Rank Coal: Effects of Gasification Temperature and Steam/Carbon (S/C) Ratio," Energies, MDPI, vol. 16(11), pages 1-16, May.
    2. Chenyang Wu & Yichen Zhang & Jiquan Zhang & Yanan Chen & Chenyu Duan & Jiawei Qi & Zhongshuai Cheng & Zengkai Pan, 2022. "Comprehensive Evaluation of the Eco-Geological Environment in the Concentrated Mining Area of Mineral Resources," Sustainability, MDPI, vol. 14(11), pages 1-19, June.
    3. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    4. Zhao, Ruijia & Song, Yunting & Wang, Haoze & Xie, Xinlian, 2022. "Bi-objective optimisation model and its exact solution method of profit and market share of novel repair-and-support ships based on game theory," Omega, Elsevier, vol. 113(C).
    5. Baiqing Sun & Ramadhan Kauzen, 2023. "The Impact of Port Infrastructure and Economic Growth in Tanzania: Adopting a Structural Equation Modeling Approach," SAGE Open, , vol. 13(1), pages 21582440221, January.
    6. Song, Yunting & Wang, Nuo & Yu, Anqi, 2019. "Temporal and spatial evolution of global iron ore supply-demand and trade structure," Resources Policy, Elsevier, vol. 64(C).
    7. Wang, Wenya & Fan, L.W. & Zhou, P., 2022. "Evolution of global fossil fuel trade dependencies," Energy, Elsevier, vol. 238(PC).
    8. Tri Wahyu Adi, 2022. "The International Gas and Crude Oil Price Variability Effect on Indonesian Coal Mining Companies Listed at IDX," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 1-10, September.
    9. Wang, Wenya & Fan, Liwei & Li, Zhenfu & Zhou, Peng & Chen, Xue, 2021. "Measuring dynamic competitive relationship and intensity among the global coal importing trade," Applied Energy, Elsevier, vol. 303(C).
    10. Zhao, Ruijia & Xie, Xinlian & Li, Xinyang & Li, Guodong, 2020. "Game-theoretical models of competition analysis and pricing strategy for two modes for repairing damaged marine structures at sea," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yujiang & Feng, Guorui & Zhang, Min & Ren, Hongrui & Bai, Jinwen & Guo, Yuxia & Jiang, Haina & Kang, Lixun, 2016. "Residual coal exploitation and its impact on sustainable development of the coal industry in China," Energy Policy, Elsevier, vol. 96(C), pages 534-541.
    2. Wang, Wenya & Fan, L.W. & Zhou, P., 2022. "Evolution of global fossil fuel trade dependencies," Energy, Elsevier, vol. 238(PC).
    3. Wang, Wenya & Fan, Liwei & Li, Zhenfu & Zhou, Peng & Chen, Xue, 2021. "Measuring dynamic competitive relationship and intensity among the global coal importing trade," Applied Energy, Elsevier, vol. 303(C).
    4. Wang, Chengjin & Ducruet, César, 2014. "Transport corridors and regional balance in China: the case of coal trade and logistics," Journal of Transport Geography, Elsevier, vol. 40(C), pages 3-16.
    5. Papież, Monika & Śmiech, Sławomir, 2015. "Dynamic steam coal market integration: Evidence from rolling cointegration analysis," Energy Economics, Elsevier, vol. 51(C), pages 510-520.
    6. Chengjin Wang & César Ducruet, 2014. "Transport corridors and regional balance in China: the case of coal trade and logistics," Post-Print halshs-01069149, HAL.
    7. Papież, Monika & Śmiech, Sławomir, 2013. "Causality-in-mean and causality-in-variance within the international steam coal market," Energy Economics, Elsevier, vol. 36(C), pages 594-604.
    8. Li, Tianjiao & Wang, Anjian & Xing, Wanli & Li, Ying & Zhou, Yanjing, 2019. "Assessing mineral extraction and trade in China from 1992 to 2015: A comparison of material flow analysis and exergoecological approach," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    9. Guangyong Zhang & Lixin Tian & Min Fu & Bingyue Wan & Wenbin Zhang, 2020. "Research on the Transmission Ability of China’s Thermal Coal Price Information Based on Directed Limited Penetrable Interdependent Network," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
    10. Tei, Alessio & Ferrari, Claudio, 2018. "PPIs and transport infrastructure: Evidence from Latin America and the Caribbean," Journal of Transport Geography, Elsevier, vol. 71(C), pages 204-212.
    11. Zaklan, Aleksandar & Cullmann, Astrid & Neumann, Anne & von Hirschhausen, Christian, 2012. "The globalization of steam coal markets and the role of logistics: An empirical analysis," Energy Economics, Elsevier, vol. 34(1), pages 105-116.
    12. Xie, Qiwei & Hao, Jingjing & Li, Jingyu & Zheng, Xiaolong, 2022. "Carbon price prediction considering climate change: A text-based framework," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 382-401.
    13. Liu, Bo & Geman, Hélyette, 2017. "World coal markets: Still weakly integrated and moving east," Journal of Commodity Markets, Elsevier, vol. 5(C), pages 63-76.
    14. Johannes Truby and Moritz Paulus, 2012. "Market Structure Scenarios in International Steam Coal Trade," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    15. Mengyao Ren & Yaoyu Lin & Meihan Jin & Zhongyuan Duan & Yongxi Gong & Yu Liu, 2020. "Examining the effect of land-use function complementarity on intra-urban spatial interactions using metro smart card records," Transportation, Springer, vol. 47(4), pages 1607-1629, August.
    16. Maryke Rademeyer & Richard Minnitt & Rosemary Falcon, 2021. "Multi-product coal distribution and price discovery for the domestic market via mathematical optimisation," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 113-126, April.
    17. Feng, Lin & Yuan, Liwei, 2017. "A developmental model on quantifying urban policy effectiveness in port city relations," MPRA Paper 81037, University Library of Munich, Germany.
    18. Justin Berli & Mattia Bunel & César Ducruet, 2018. "Sea-Land Interdependence in the Global Maritime Network: the Case of Australian Port Cities," Networks and Spatial Economics, Springer, vol. 18(3), pages 447-471, September.
    19. Zhang, Qiang & Yan, Kai & Yang, Dong, 2021. "Port system evolution in Chinese coastal regions: A provincial perspective," Journal of Transport Geography, Elsevier, vol. 92(C).
    20. Justin Berli & Mattia Bunel & César Ducruet, 2018. "Sea-Land Interdependence in the Global Maritime Network: the Case of Australian Port Cities," Post-Print hal-01806692, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:168:y:2019:i:c:p:1073-1080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.