IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v229y2021ics036054422100904x.html
   My bibliography  Save this article

How UK farewell to coal – Insight from multi-regional input-output and logarithmic mean divisia index analysis

Author

Listed:
  • Wang, Qiang
  • Song, Xiaoxin

Abstract

Exploring the drivers of the decline in coal consumption in the United Kingdom (UK) may provide useful lessons for other countries, which want to control coal consumption and reduce carbon. This study investigated the key drivers of the decline in UK's production- and consumption-based coal consumptions from a global perspective, by combining the multi-regional input-output analysis and Logarithmic Mean Divisia Index methods. From a global view, both consumption- and production-based coal consumptions of UK declined during 1995–2009, except consumption-based coal consumption increased from 1995 to 2007. As a net importer, UK's coal consumption flows have been mainly embodied in exports for developed countries and embodied in imports from developing countries. On a national level, the offset effects of UK's coal consumption were from the energy transformations that reduced the proportions of coal consumption and general developments in the energy efficiency. It is found that its decline of coal consumption was only the superficial success, as the decrease actually was partly due to the transfers to other countries. But there are also lessons to be learned from that, because UK had also ultimately achieved the goal of using less energy consumption to generate higher gross domestic production, by technological improvements to promote an improvement in energy intensity. Therefore, coal consumption declined in the UK was the result of the combined effects of energy transition and outsourcing.

Suggested Citation

  • Wang, Qiang & Song, Xiaoxin, 2021. "How UK farewell to coal – Insight from multi-regional input-output and logarithmic mean divisia index analysis," Energy, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:energy:v:229:y:2021:i:c:s036054422100904x
    DOI: 10.1016/j.energy.2021.120655
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422100904X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120655?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul W. Griffin & Geoffrey P. Hammond & Jonathan B. Norman, 2016. "Industrial energy use and carbon emissions reduction: a UK perspective," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(6), pages 684-714, November.
    2. Zhang, B. & Qiao, H. & Chen, Z.M. & Chen, B., 2016. "Growth in embodied energy transfers via China’s domestic trade: Evidence from multi-regional input–output analysis," Applied Energy, Elsevier, vol. 184(C), pages 1093-1105.
    3. Lahiri-Dutt, Kuntala, 2016. "The diverse worlds of coal in India: Energising the nation, energising livelihoods," Energy Policy, Elsevier, vol. 99(C), pages 203-213.
    4. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    5. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    6. Wang, Qiang & Li, Rongrong, 2016. "Journey to burning half of global coal: Trajectory and drivers of China׳s coal use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 341-346.
    7. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Ma, Minda & Cai, Wei & Cai, Weiguang, 2018. "Carbon abatement in China's commercial building sector: A bottom-up measurement model based on Kaya-LMDI methods," Energy, Elsevier, vol. 165(PA), pages 350-368.
    9. Griffin, Paul W. & Hammond, Geoffrey P. & Norman, Jonathan B., 2018. "Industrial energy use and carbon emissions reduction in the chemicals sector: A UK perspective," Applied Energy, Elsevier, vol. 227(C), pages 587-602.
    10. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation," Energy Economics, Elsevier, vol. 64(C), pages 13-23.
    11. Ishizaka, Alessio & Siraj, Sajid & Nemery, Philippe, 2016. "Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool," Energy, Elsevier, vol. 95(C), pages 602-611.
    12. Liu, Lirong & Huang, Guohe & Baetz, Brian & Zhang, Kaiqiang, 2018. "Environmentally-extended input-output simulation for analyzing production-based and consumption-based industrial greenhouse gas mitigation policies," Applied Energy, Elsevier, vol. 232(C), pages 69-78.
    13. Lin, Bo-qiang & Liu, Jiang-hua, 2010. "Estimating coal production peak and trends of coal imports in China," Energy Policy, Elsevier, vol. 38(1), pages 512-519, January.
    14. Wang, Yanqiu & Zhu, Zhiwei & Zhu, Zhaoge & Liu, Zhenbin, 2019. "Analysis of China's energy consumption changing using the Mean Rate of Change Index and the logarithmic mean divisia index," Energy, Elsevier, vol. 167(C), pages 275-282.
    15. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    16. Rubio, M.d.Mar & Folchi, Mauricio, 2012. "Will small energy consumers be faster in transition? Evidence from the early shift from coal to oil in Latin America," Energy Policy, Elsevier, vol. 50(C), pages 50-61.
    17. Qi, Ye & Stern, Nicholas & Wu, Tong & Lu, Jiaqi & Green, Fergus, 2016. "China's post-coal growth," LSE Research Online Documents on Economics 67503, London School of Economics and Political Science, LSE Library.
    18. De Oliveira-De Jesus, Paulo M., 2019. "Effect of generation capacity factors on carbon emission intensity of electricity of Latin America & the Caribbean, a temporal IDA-LMDI analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 516-526.
    19. Zhang, You & Yuan, Zengwei & Margni, Manuele & Bulle, Cécile & Hua, Hui & Jiang, Songyan & Liu, Xuewei, 2019. "Intensive carbon dioxide emission of coal chemical industry in China," Applied Energy, Elsevier, vol. 236(C), pages 540-550.
    20. Lin, Jiang & Fridley, David & Lu, Hongyou & Price, Lynn & Zhou, Nan, 2018. "Has coal use peaked in China: Near-term trends in China's coal consumption," Energy Policy, Elsevier, vol. 123(C), pages 208-214.
    21. Turnheim, Bruno & Geels, Frank W., 2012. "Regime destabilisation as the flipside of energy transitions: Lessons from the history of the British coal industry (1913–1997)," Energy Policy, Elsevier, vol. 50(C), pages 35-49.
    22. Wang, Qiang & Li, Rongrong, 2017. "Decline in China's coal consumption: An evidence of peak coal or a temporary blip?," Energy Policy, Elsevier, vol. 108(C), pages 696-701.
    23. Stephanie A. Henson & Claudie Beaulieu & Tatiana Ilyina & Jasmin G. John & Matthew Long & Roland Séférian & Jerry Tjiputra & Jorge L. Sarmiento, 2017. "Rapid emergence of climate change in environmental drivers of marine ecosystems," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    24. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2017. "Household carbon footprints in the Baltic States: A global multi-regional input–output analysis from 1995 to 2011," Applied Energy, Elsevier, vol. 189(C), pages 780-788.
    25. Barton, John & Davies, Lloyd & Dooley, Ben & Foxon, Timothy J. & Galloway, Stuart & Hammond, Geoffrey P. & O’Grady, Áine & Robertson, Elizabeth & Thomson, Murray, 2018. "Transition pathways for a UK low-carbon electricity system: Comparing scenarios and technology implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2779-2790.
    26. Chai, Jian & Du, Mengfan & Liang, Ting & Sun, Xiaojie Christine & Yu, Ji & Zhang, Zhe George, 2019. "Coal consumption in China: How to bend down the curve?," Energy Economics, Elsevier, vol. 80(C), pages 38-47.
    27. Štreimikienė, Dalia & Balezentis, Tomas, 2016. "Kaya identity for analysis of the main drivers of GHG emissions and feasibility to implement EU “20–20–20” targets in the Baltic States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1108-1113.
    28. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    29. Wu, Ya & Zhang, Wanying, 2016. "The driving factors behind coal demand in China from 1997 to 2012: An empirical study of input-output structural decomposition analysis," Energy Policy, Elsevier, vol. 95(C), pages 126-134.
    30. Aragón, Fernando M. & Rud, Juan Pablo & Toews, Gerhard, 2018. "Resource shocks, employment, and gender: Evidence from the collapse of the UK coal industry," Labour Economics, Elsevier, vol. 52(C), pages 54-67.
    31. Wu, X.F. & Chen, G.Q., 2018. "Coal use embodied in globalized world economy: From source to sink through supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 978-993.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shanshan Zheng & Jianzhou Yang & Cheng Chen & Bingbin Wu, 2023. "Embodied Carbon Accounting for Forest Industry Trade in BRICS Countries: An MRIO Modeling Approach," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    2. Yong Shi & Anda Tang & Tongsheng Yao, 2022. "A Study on Inter-Provincial Environmental Pollution Movement in China Based on the Input–Output Method," Energies, MDPI, vol. 15(18), pages 1-19, September.
    3. Hyungsu Kang & Hyunmin Daniel Zoh, 2022. "Classifying Regional and Industrial Characteristics of GHG Emissions in South Korea," Energies, MDPI, vol. 15(20), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qiang & Song, Xiaoxin, 2021. "Why do China and India burn 60% of the world’s coal? A decomposition analysis from a global perspective," Energy, Elsevier, vol. 227(C).
    2. Qiao, Hui & Chen, Siyu & Dong, Xiucheng & Dong, Kangyin, 2019. "Has China's coal consumption actually reached its peak? National and regional analysis considering cross-sectional dependence and heterogeneity," Energy Economics, Elsevier, vol. 84(C).
    3. Boqiang Lin, & Wang, Miao, 2019. "Possibilities of decoupling for China’s energy consumption from economic growth: A temporal-spatial analysis," Energy, Elsevier, vol. 185(C), pages 951-960.
    4. Yang, Qing & Zhang, Lei & Zhang, Jinsuo & Zou, Shaohui, 2021. "System simulation and policy optimization of China's coal production capacity deviation in terms of the economy, environment, and energy security," Resources Policy, Elsevier, vol. 74(C).
    5. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Zhang, Zengkai & Zhu, Kunfu, 2017. "Border carbon adjustments for exports of the United States and the European Union: Taking border-crossing frequency into account," Applied Energy, Elsevier, vol. 201(C), pages 188-199.
    7. Gu, Fu & Wang, Jiqiang & Guo, Jianfeng & Fan, Ying, 2020. "How the supply and demand of steam coal affect the investment in clean energy industry? Evidence from China," Resources Policy, Elsevier, vol. 69(C).
    8. Zhang, Zengkai & Lin, Jintai, 2018. "From production-based to consumption-based regional carbon inventories: Insight from spatial production fragmentation," Applied Energy, Elsevier, vol. 211(C), pages 549-567.
    9. Li, Y.L. & Chen, B. & Chen, G.Q., 2020. "Carbon network embodied in international trade: Global structural evolution and its policy implications," Energy Policy, Elsevier, vol. 139(C).
    10. Robi Kurniawan & Gregory P. Trencher & Achmed S. Edianto & Imam E. Setiawan & Kazuyo Matsubae, 2020. "Understanding the Multi-Faceted Drivers of Increasing Coal Consumption in Indonesia," Energies, MDPI, vol. 13(14), pages 1-22, July.
    11. Jinghui Liu & Tingting Geng & Xingwei Wang & Guojin Qin, 2020. "Determinants of Oil Footprints Embodied in Sino-US Trade: A Perspective from the Globalizing World," Energies, MDPI, vol. 13(15), pages 1-26, July.
    12. Tian, Xu & Chen, Bin & Geng, Yong & Zhong, Shaozhuo & Gao, Cuixia & Wilson, Jeffrey & Cui, Xiaowei & Dou, Yi, 2019. "Energy footprint pathways of China," Energy, Elsevier, vol. 180(C), pages 330-340.
    13. Stergiou, Eirini & Kounetas, Konstantinos, 2022. "Heterogeneity, spillovers and eco-efficiency of European industries under different pollutants’ scenarios. Is there a definite direction?," Ecological Economics, Elsevier, vol. 195(C).
    14. José A. Camacho & Lucas Silva Almeida & Mercedes Rodríguez & Jesús Molina, 2022. "Domestic versus foreign energy use: an analysis for four European countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4602-4622, April.
    15. Wang, Zhaojing & Jiang, Qingzhe & Dong, Kangyin & Mubarik, Muhammad Shujaat & Dong, Xiucheng, 2020. "Decomposition of the US CO2 emissions and its mitigation potential: An aggregate and sectoral analysis," Energy Policy, Elsevier, vol. 147(C).
    16. Shasha Wang & Rongrong Li, 2018. "Toward the Coordinated Sustainable Development of Urban Water Resource Use and Economic Growth: An Empirical Analysis of Tianjin City, China," Sustainability, MDPI, vol. 10(5), pages 1-13, April.
    17. Wang, Miao & Feng, Chao, 2018. "Investigating the drivers of energy-related CO2 emissions in China’s industrial sector: From regional and provincial perspectives," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 136-147.
    18. Luo, Yulong & Zeng, Weiliang & Wang, Yueqiang & Li, Danzhou & Hu, Xianbiao & Zhang, Hua, 2021. "A hybrid approach for examining the drivers of energy consumption in Shanghai," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    19. Ke Zhang & Xingwei Wang, 2021. "Pollution Haven Hypothesis of Global CO 2 , SO 2 , NO x —Evidence from 43 Economies and 56 Sectors," IJERPH, MDPI, vol. 18(12), pages 1-27, June.
    20. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:229:y:2021:i:c:s036054422100904x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.