IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v134y2019ics0301421519305373.html
   My bibliography  Save this article

Solar lobby and energy transition in Japan

Author

Listed:
  • Li, Aitong
  • Xu, Yuan
  • Shiroyama, Hideaki

Abstract

Due to significant cost advantages, wind energy penetrated the energy mix of most large countries much faster than solar PV did until the recent decade. However, Japan has been almost one-sidedly leaning toward the more expensive solar PV. For using solar PV electricity, the Japanese consumers are also paying sizably higher tariffs than those in other countries, especially after the Fukushima nuclear accident in 2011 that led to the sudden suspension of all nuclear power plants. Japan's energy transition towards renewables is accordingly largely single legged, rather than more balanced to take advantage of both wind turbines and solar PV. This article explains the puzzle on why renewable energy development in Japan has created such a wide distance from more economically optimal situations. We focus on the initiation, formation and impacts of the solar lobby that comprises bureaucracies, politicians, solar PV manufacturers, and independent power producers. Policy implications are drawn for Japan and other countries on the importance of controlling political lobby to achieve less costly energy transition.

Suggested Citation

  • Li, Aitong & Xu, Yuan & Shiroyama, Hideaki, 2019. "Solar lobby and energy transition in Japan," Energy Policy, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:enepol:v:134:y:2019:i:c:s0301421519305373
    DOI: 10.1016/j.enpol.2019.110950
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519305373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.110950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Justin Yifu Lin, 2011. "New Structural Economics: A Framework for Rethinking Development," The World Bank Research Observer, World Bank, vol. 26(2), pages 193-221, August.
    2. Nishio, Kenichiro & Asano, Hiroshi, 2006. "Supply amount and marginal price of renewable electricity under the renewables portfolio standard in Japan," Energy Policy, Elsevier, vol. 34(15), pages 2373-2387, October.
    3. Robert W. Rycroft & Don E. Kash, 1992. "Technology Policy Requires Picking Winners," Economic Development Quarterly, , vol. 6(3), pages 227-240, August.
    4. Wakiyama, Takako & Kuriyama, Akihisa, 2018. "Assessment of renewable energy expansion potential and its implications on reforming Japan's electricity system," Energy Policy, Elsevier, vol. 115(C), pages 302-316.
    5. Watanabe, Chihiro, 1995. "Identification of the role of renewable energy," Renewable Energy, Elsevier, vol. 6(3), pages 237-274.
    6. Huenteler, Joern & Schmidt, Tobias S. & Kanie, Norichika, 2012. "Japan's post-Fukushima challenge – implications from the German experience on renewable energy policy," Energy Policy, Elsevier, vol. 45(C), pages 6-11.
    7. Choi, Gobong & Huh, Sung-Yoon & Heo, Eunnyeong & Lee, Chul-Yong, 2018. "Prices versus quantities: Comparing economic efficiency of feed-in tariff and renewable portfolio standard in promoting renewable electricity generation," Energy Policy, Elsevier, vol. 113(C), pages 239-248.
    8. Chowdhury, Sanjeeda & Sumita, Ushio & Islam, Ashraful & Bedja, Idriss, 2014. "Importance of policy for energy system transformation: Diffusion of PV technology in Japan and Germany," Energy Policy, Elsevier, vol. 68(C), pages 285-293.
    9. Pegels, Anna & Lütkenhorst, Wilfried, 2014. "Is Germany׳s energy transition a case of successful green industrial policy? Contrasting wind and solar PV," Energy Policy, Elsevier, vol. 74(C), pages 522-534.
    10. Kuramochi, Takeshi, 2015. "Review of energy and climate policy developments in Japan before and after Fukushima," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1320-1332.
    11. Painuly, J.P, 2001. "Barriers to renewable energy penetration; a framework for analysis," Renewable Energy, Elsevier, vol. 24(1), pages 73-89.
    12. Esteban, Miguel & Portugal-Pereira, Joana & Mclellan, Benjamin C. & Bricker, Jeremy & Farzaneh, Hooman & Djalilova, Nigora & Ishihara, Keiichi N. & Takagi, Hiroshi & Roeber, Volker, 2018. "100% renewable energy system in Japan: Smoothening and ancillary services," Applied Energy, Elsevier, vol. 224(C), pages 698-707.
    13. Valentine, Scott & Sovacool, Benjamin K. & Matsuura, Masahiro, 2011. "Empowered? Evaluating Japan's national energy strategy under the DPJ administration," Energy Policy, Elsevier, vol. 39(3), pages 1865-1876, March.
    14. Jochen Markard, 2018. "The next phase of the energy transition and its implications for research and policy," Nature Energy, Nature, vol. 3(8), pages 628-633, August.
    15. Roger Fouquet, 2016. "Path dependence in energy systems and economic development," Nature Energy, Nature, vol. 1(8), pages 1-5, August.
    16. Maruyama, Yasushi & Nishikido, Makoto & Iida, Tetsunari, 2007. "The rise of community wind power in Japan: Enhanced acceptance through social innovation," Energy Policy, Elsevier, vol. 35(5), pages 2761-2769, May.
    17. Pierson, Paul, 2000. "Increasing Returns, Path Dependence, and the Study of Politics," American Political Science Review, Cambridge University Press, vol. 94(2), pages 251-267, June.
    18. Nordensvärd, Johan & Urban, Frauke, 2015. "The stuttering energy transition in Germany: Wind energy policy and feed-in tariff lock-in," Energy Policy, Elsevier, vol. 82(C), pages 156-165.
    19. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    20. Hayashi, Masatsugu & Hughes, Larry, 2013. "The policy responses to the Fukushima nuclear accident and their effect on Japanese energy security," Energy Policy, Elsevier, vol. 59(C), pages 86-101.
    21. Bale, Catherine S.E. & Varga, Liz & Foxon, Timothy J., 2015. "Energy and complexity: New ways forward," Applied Energy, Elsevier, vol. 138(C), pages 150-159.
    22. Moe, Espen, 2012. "Vested interests, energy efficiency and renewables in Japan," Energy Policy, Elsevier, vol. 40(C), pages 260-273.
    23. Verbruggen, Aviel & Fischedick, Manfred & Moomaw, William & Weir, Tony & Nadaï, Alain & Nilsson, Lars J. & Nyboer, John & Sathaye, Jayant, 2010. "Renewable energy costs, potentials, barriers: Conceptual issues," Energy Policy, Elsevier, vol. 38(2), pages 850-861, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wadim Strielkowski & Lubomír Civín & Elena Tarkhanova & Manuela Tvaronavičienė & Yelena Petrenko, 2021. "Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review," Energies, MDPI, vol. 14(24), pages 1-24, December.
    2. Liu, Xiaorui & Guo, Wen & Feng, Qiang & Wang, Peng, 2022. "Spatial correlation, driving factors and dynamic spatial spillover of electricity consumption in China: A perspective on industry heterogeneity," Energy, Elsevier, vol. 257(C).
    3. Gianluca Stefani & Mario Biggeri & Lucia Ferrone, 2022. "Sustainable Transitions Narratives: An Analysis of the Literature through Topic Modelling," Sustainability, MDPI, vol. 14(4), pages 1-25, February.
    4. Lazar D. Gitelman & Mikhail V. Kozhevnikov, 2023. "New Approaches to the Concept of Energy Transition in the Times of Energy Crisis," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    5. Chu, Ling & Takeuchi, Kenji, 2022. "The non-operating solar projects: Examining the impact of the feed-in tariff amendment in Japan," Energy Policy, Elsevier, vol. 160(C).
    6. Hartwig, Manuela & Emori, Seita & Asayama, Shinichiro, 2023. "Normalized injustices in the national energy discourse: A critical analysis of the energy policy framework in Japan through the three tenets of energy justice," Energy Policy, Elsevier, vol. 174(C).
    7. Elena Shadrina, 2020. "Non-Hydropower Renewable Energy in Central Asia: Assessment of Deployment Status and Analysis of Underlying Factors," Energies, MDPI, vol. 13(11), pages 1-29, June.
    8. Hengtian Wang & Xiaolong Yang & Xinxin Xu & Liu Fei, 2021. "Exploring Opportunities and Challenges of Solar PV Power under Carbon Peak Scenario in China: A PEST Analysis," Energies, MDPI, vol. 14(11), pages 1-28, May.
    9. Ying, Zhou & Xin-gang, Zhao & Lei, Xu, 2022. "Supply side incentive under the Renewable Portfolio Standards: A perspective of China," Renewable Energy, Elsevier, vol. 193(C), pages 505-518.
    10. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Shahbaz, Muhammad & Vinh Vo, Xuan, 2021. "How energy transition and power consumption are related in Asian economies with different income levels?," Energy, Elsevier, vol. 237(C).
    11. Li, Yanjiao & Qing, Chen & Guo, Shili & Deng, Xin & Song, Jiahao & Xu, Dingde, 2023. "When my friends and relatives go solar, should I go solar too? —— Evidence from rural Sichuan province, China," Renewable Energy, Elsevier, vol. 203(C), pages 753-762.
    12. Bekirsky, N. & Hoicka, C.E. & Brisbois, M.C. & Ramirez Camargo, L., 2022. "Many actors amongst multiple renewables: A systematic review of actor involvement in complementarity of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
    2. Rémi Delage & Taichi Matsuoka & Toshihiko Nakata, 2021. "Spatial–Temporal Estimation and Analysis of Japan Onshore and Offshore Wind Energy Potential," Energies, MDPI, vol. 14(8), pages 1-12, April.
    3. Trencher, Gregory & Healy, Noel & Hasegawa, Koichi & Asuka, Jusen, 2019. "Discursive resistance to phasing out coal-fired electricity: Narratives in Japan's coal regime," Energy Policy, Elsevier, vol. 132(C), pages 782-796.
    4. Kirsi Kotilainen & Pami Aalto & Jussi Valta & Antti Rautiainen & Matti Kojo & Benjamin K. Sovacool, 2019. "From path dependence to policy mixes for Nordic electric mobility: Lessons for accelerating future transport transitions," Policy Sciences, Springer;Society of Policy Sciences, vol. 52(4), pages 573-600, December.
    5. Fumihiko Matsubara, 2019. "The Landscape of Business Growth for Oil and Gas Upstream Companies: A case from Japan," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 86-94.
    6. Gregor Semieniuk & Emanuele Campiglio & Jean‐Francois Mercure & Ulrich Volz & Neil R. Edwards, 2021. "Low‐carbon transition risks for finance," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    7. Islam, Aminul & Chan, Eng-Seng & Taufiq-Yap, Yun Hin & Mondal, Md. Alam Hossain & Moniruzzaman, M. & Mridha, Moniruzzaman, 2014. "Energy security in Bangladesh perspective—An assessment and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 154-171.
    8. Radtke, Jörg & Scherhaufer, Patrick, 2022. "A social science perspective on conflicts in the energy transition: An introduction to the special issue," Utilities Policy, Elsevier, vol. 78(C).
    9. André Sorensen & Anna-Katharina Brenner, 2021. "Cities, Urban Property Systems, and Sustainability Transitions: Contested Processes of Institutional Change and the Regulation of Urban Property Development," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    10. Murshed, Muntasir, 2019. "Trade Liberalization Policies and Renewable Energy Transition in Low and Middle-Income Countries? An Instrumental Variable Approach," MPRA Paper 97075, University Library of Munich, Germany.
    11. Child, Michael & Breyer, Christian, 2017. "Transition and transformation: A review of the concept of change in the progress towards future sustainable energy systems," Energy Policy, Elsevier, vol. 107(C), pages 11-26.
    12. Csereklyei, Zsuzsanna & Anantharama, Nandini & Kallies, Anne, 2021. "Electricity market transitions in Australia: Evidence using model-based clustering," Energy Economics, Elsevier, vol. 103(C).
    13. Knuepfer, K. & Rogalski, N. & Knuepfer, A. & Esteban, M. & Shibayama, T., 2022. "A reliable energy system for Japan with merit order dispatch, high variable renewable share and no nuclear power," Applied Energy, Elsevier, vol. 328(C).
    14. Frank W. Geels, 2013. "The Impact of the Financial and Economic Crisis on Sustainability Transitions: Financial Investment, Governance and Public Discourse. WWWforEurope Working Paper No. 39," WIFO Studies, WIFO, number 47014, April.
    15. Kriechbaum, Michael & Posch, Alfred & Hauswiesner, Angelika, 2021. "Hype cycles during socio-technical transitions: The dynamics of collective expectations about renewable energy in Germany," Research Policy, Elsevier, vol. 50(9).
    16. Foxon, Timothy J. & Pearson, Peter J.G. & Arapostathis, Stathis & Carlsson-Hyslop, Anna & Thornton, Judith, 2013. "Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future," Energy Policy, Elsevier, vol. 52(C), pages 146-158.
    17. Kuriyama, Akihisa & Abe, Naoya, 2021. "Decarbonisation of the power sector to engender a ‘Just transition’ in Japan: Quantifying local employment impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Andersen, Allan Dahl & Markard, Jochen, 2020. "Multi-technology interaction in socio-technical transitions: How recent dynamics in HVDC technology can inform transition theories," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    19. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    20. Ruggiero, Salvatore & Varho, Vilja & Rikkonen, Pasi, 2015. "Transition to distributed energy generation in Finland: Prospects and barriers," Energy Policy, Elsevier, vol. 86(C), pages 433-443.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:134:y:2019:i:c:s0301421519305373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.