IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v224y2018icp698-707.html
   My bibliography  Save this article

100% renewable energy system in Japan: Smoothening and ancillary services

Author

Listed:
  • Esteban, Miguel
  • Portugal-Pereira, Joana
  • Mclellan, Benjamin C.
  • Bricker, Jeremy
  • Farzaneh, Hooman
  • Djalilova, Nigora
  • Ishihara, Keiichi N.
  • Takagi, Hiroshi
  • Roeber, Volker

Abstract

In the aftermath of the Paris Agreements, many countries around the globe have pledged to reduce the amount of greenhouse gas emissions being released into the atmosphere. To do so, it is important that the amount of renewable energy in the electricity grid increases. However, there are worries of the capacity of the grid to cope with intermittent energy sources. To assess the feasibility of a 100% renewable energy system in Japan, the authors conducted an hourly simulation of future electricity production based on wind, solar and tidal data. The system was shown to be stable, and the authors calculated the required capacity of electrical batteries that would be necessary to balance such a system.

Suggested Citation

  • Esteban, Miguel & Portugal-Pereira, Joana & Mclellan, Benjamin C. & Bricker, Jeremy & Farzaneh, Hooman & Djalilova, Nigora & Ishihara, Keiichi N. & Takagi, Hiroshi & Roeber, Volker, 2018. "100% renewable energy system in Japan: Smoothening and ancillary services," Applied Energy, Elsevier, vol. 224(C), pages 698-707.
  • Handle: RePEc:eee:appene:v:224:y:2018:i:c:p:698-707
    DOI: 10.1016/j.apenergy.2018.04.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918306299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.04.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    2. Giaouris, Damian & Papadopoulos, Athanasios I. & Ziogou, Chrysovalantou & Ipsakis, Dimitris & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos & Stergiopoulos, Fotis & Elmasides, Costas, 2013. "Performance investigation of a hybrid renewable power generation and storage system using systemic power management models," Energy, Elsevier, vol. 61(C), pages 621-635.
    3. Tsuchiya, Haruki, 2012. "Electricity supply largely from solar and wind resources in Japan," Renewable Energy, Elsevier, vol. 48(C), pages 318-325.
    4. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2012. "Economic and environmental analysis of power generation expansion in Japan considering Fukushima nuclear accident using a multi-objective optimization model," Energy, Elsevier, vol. 44(1), pages 986-995.
    5. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2013. "Evaluating options for the future energy mix of Japan after the Fukushima nuclear crisis," Energy Policy, Elsevier, vol. 56(C), pages 418-424.
    6. Esteban, Miguel & Portugal-Pereira, Joana, 2014. "Post-disaster resilience of a 100% renewable energy system in Japan," Energy, Elsevier, vol. 68(C), pages 756-764.
    7. Esteban, Miguel & Zhang, Qi & Utama, Agya & Tezuka, Tetsuo & Ishihara, Keiichi N., 2010. "Methodology to estimate the output of a dual solar-wind renewable energy system in Japan," Energy Policy, Elsevier, vol. 38(12), pages 7793-7802, December.
    8. Hall, Peter J. & Bain, Euan J., 2008. "Energy-storage technologies and electricity generation," Energy Policy, Elsevier, vol. 36(12), pages 4352-4355, December.
    9. Esteban, Miguel & Zhang, Qi & Utama, Agya, 2012. "Estimation of the energy storage requirement of a future 100% renewable energy system in Japan," Energy Policy, Elsevier, vol. 47(C), pages 22-31.
    10. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    11. Bricker, Jeremy D. & Esteban, Miguel & Takagi, Hiroshi & Roeber, Volker, 2017. "Economic feasibility of tidal stream and wave power in post-Fukushima Japan," Renewable Energy, Elsevier, vol. 114(PA), pages 32-45.
    12. Yang, Christopher, 2008. "Hydrogen and electricity: Parallels, interactions,and convergence," Institute of Transportation Studies, Working Paper Series qt0p14s1cg, Institute of Transportation Studies, UC Davis.
    13. Lin, Shin-Yeu & Chen, Jyun-Fu, 2013. "Distributed optimal power flow for smart grid transmission system with renewable energy sources," Energy, Elsevier, vol. 56(C), pages 184-192.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esteban, Miguel & Portugal-Pereira, Joana, 2014. "Post-disaster resilience of a 100% renewable energy system in Japan," Energy, Elsevier, vol. 68(C), pages 756-764.
    2. Bricker, Jeremy D. & Esteban, Miguel & Takagi, Hiroshi & Roeber, Volker, 2017. "Economic feasibility of tidal stream and wave power in post-Fukushima Japan," Renewable Energy, Elsevier, vol. 114(PA), pages 32-45.
    3. Knuepfer, K. & Rogalski, N. & Knuepfer, A. & Esteban, M. & Shibayama, T., 2022. "A reliable energy system for Japan with merit order dispatch, high variable renewable share and no nuclear power," Applied Energy, Elsevier, vol. 328(C).
    4. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    5. Esteban, Miguel & Zhang, Qi & Utama, Agya, 2012. "Estimation of the energy storage requirement of a future 100% renewable energy system in Japan," Energy Policy, Elsevier, vol. 47(C), pages 22-31.
    6. Esteban, Miguel & Zhang, Qi & Utama, Agya & Tezuka, Tetsuo & Ishihara, Keiichi N., 2010. "Methodology to estimate the output of a dual solar-wind renewable energy system in Japan," Energy Policy, Elsevier, vol. 38(12), pages 7793-7802, December.
    7. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    8. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    9. Ferreira, Helder Lopes & Garde, Raquel & Fulli, Gianluca & Kling, Wil & Lopes, Joao Pecas, 2013. "Characterisation of electrical energy storage technologies," Energy, Elsevier, vol. 53(C), pages 288-298.
    10. Zapata, Sebastian & Castaneda, Monica & Franco, Carlos Jaime & Dyner, Isaac, 2019. "Clean and secure power supply: A system dynamics based appraisal," Energy Policy, Elsevier, vol. 131(C), pages 9-21.
    11. Olav H. Hohmeyer & Sönke Bohm, 2015. "Trends toward 100% renewable electricity supply in Germany and Europe: a paradigm shift in energy policies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(1), pages 74-97, January.
    12. KAWAGUCHI, Daiji & 川口, 大司 & YUKUTAKE, Norifumi & 行武, 憲史, 2014. "Estimating the Residential Land Damage of the Fukushima Accident," Discussion Papers 2014-18, Graduate School of Economics, Hitotsubashi University.
    13. Homma, Takashi & Akimoto, Keigo, 2013. "Analysis of Japan's energy and environment strategy after the Fukushima nuclear plant accident," Energy Policy, Elsevier, vol. 62(C), pages 1216-1225.
    14. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2018. "A quantitative analysis of Japan's optimal power generation mix in 2050 and the role of CO2-free hydrogen," Energy, Elsevier, vol. 165(PB), pages 1200-1219.
    15. Wu, Yunyang & Reedman, Luke J. & Barrett, Mark A. & Spataru, Catalina, 2018. "Comparison of CST with different hours of storage in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 122(C), pages 487-496.
    16. Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).
    17. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    18. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    19. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Investigating the economics of the power sector under high penetration of variable renewable energies," Applied Energy, Elsevier, vol. 267(C).
    20. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:224:y:2018:i:c:p:698-707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.