IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v4y2015i1p74-97.html
   My bibliography  Save this article

Trends toward 100% renewable electricity supply in Germany and Europe: a paradigm shift in energy policies

Author

Listed:
  • Olav H. Hohmeyer
  • Sönke Bohm

Abstract

In industrialized countries such as Germany, electricity production contributes 30–40% of the greenhouse gas (GHG) emissions of the country. Confronted with GHG emission reductions targets of 80–95% by 2050 and with some GHG emitting sectors confronted with great difficulties to reach such targets, such as agriculture, the power sector will need to reduce its GHG emissions virtually to zero. As nuclear energy involves very substantial accident risks and the unsolved problem of safe long‐term deposit of nuclear waste and as carbon dioxide capture and storage (CCS) has rather limited safe storage potentials at least in Europe, the question arises, whether it will be possible to supply 100% of all necessary electricity from renewable energy sources? We show that a fast expanding volume of analyses underlines the feasibility and reliability of 100% renewable electricity supply systems. This fast mounting evidence appears to mark the beginning of a paradigm shift in energy politics, as highly regarded national and international advisory bodies such as the IPCC or the German Council of Environmental Advisors start to adopt this perspective. The example of the highly publicized study of the German Council of Environmental Advisors shows how a 100% renewable electricity system for Germany, Europe, and North Africa could look in 2050 and how the transition toward such a system could be achieved. This study, conducted with major input from the authors, is used to show the major aspects of a 100% renewable electricity supply system, such as the security of supply in every hour of the year, the compensation of intermittent sources such as wind and solar PV energy by other renewables and expanded storage, and the necessary extension of national and international grid infrastructures. WIREs Energy Environ 2015, 4:74–97. doi: 10.1002/wene.128 This article is categorized under: Energy and Development > Economics and Policy

Suggested Citation

  • Olav H. Hohmeyer & Sönke Bohm, 2015. "Trends toward 100% renewable electricity supply in Germany and Europe: a paradigm shift in energy policies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(1), pages 74-97, January.
  • Handle: RePEc:bla:wireae:v:4:y:2015:i:1:p:74-97
    DOI: 10.1002/wene.128
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.128
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kwon, Pil Seok & Østergaard, Poul Alberg, 2012. "Comparison of future energy scenarios for Denmark: IDA 2050, CEESA (Coherent Energy and Environmental System Analysis), and Climate Commission 2050," Energy, Elsevier, vol. 46(1), pages 275-282.
    2. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
    3. Elliston, Ben & Diesendorf, Mark & MacGill, Iain, 2012. "Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 45(C), pages 606-613.
    4. Glasnovic, Zvonimir & Margeta, Jure, 2011. "Vision of total renewable electricity scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1873-1884, May.
    5. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad & Zhang, Xiliang, 2011. "Potential of renewable energy systems in China," Applied Energy, Elsevier, vol. 88(2), pages 518-525, February.
    6. Trainer, Ted, 2012. "Can Australia run on renewable energy? The negative case," Energy Policy, Elsevier, vol. 50(C), pages 306-314.
    7. Esteban, Miguel & Zhang, Qi & Utama, Agya, 2012. "Estimation of the energy storage requirement of a future 100% renewable energy system in Japan," Energy Policy, Elsevier, vol. 47(C), pages 22-31.
    8. Tsuchiya, Haruki, 2012. "Electricity supply largely from solar and wind resources in Japan," Renewable Energy, Elsevier, vol. 48(C), pages 318-325.
    9. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2013. "Least cost 100% renewable electricity scenarios in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 270-282.
    10. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    11. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    12. Hart, Elaine K. & Jacobson, Mark Z., 2011. "A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables," Renewable Energy, Elsevier, vol. 36(8), pages 2278-2286.
    13. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    14. Sovacool, Benjamin K. & Watts, Charmaine, 2009. "Going Completely Renewable: Is It Possible (Let Alone Desirable)?," The Electricity Journal, Elsevier, vol. 22(4), pages 95-111, May.
    15. repec:taf:applec:45:y:2013:i:18:p:2683-2693 is not listed on IDEAS
    16. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    17. Ronald Huisman & Mehtap Kili砍, 2013. "A history of European electricity day-ahead prices," Applied Economics, Taylor & Francis Journals, vol. 45(18), pages 2683-2693, June.
    18. Osmani, Atif & Zhang, Jun & Gonela, Vinay & Awudu, Iddrisu, 2013. "Electricity generation from renewables in the United States: Resource potential, current usage, technical status, challenges, strategies, policies, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 454-472.
    19. Gianni Silvestrini, 2012. "100% renewable electricity by mid century in italy?," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(1), pages 43-53.
    20. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    21. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    22. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    23. Mason, I.G. & Page, S.C. & Williamson, A.G., 2010. "A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources," Energy Policy, Elsevier, vol. 38(8), pages 3973-3984, August.
    24. Lund, H., 2006. "Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply," Renewable Energy, Elsevier, vol. 31(4), pages 503-515.
    25. Jacobson, Mark Z. & Howarth, Robert W. & Delucchi, Mark A. & Scobie, Stan R. & Barth, Jannette M. & Dvorak, Michael J. & Klevze, Megan & Katkhuda, Hind & Miranda, Brian & Chowdhury, Navid A. & Jones, , 2013. "Examining the feasibility of converting New York State’s all-purpose energy infrastructure to one using wind, water, and sunlight," Energy Policy, Elsevier, vol. 57(C), pages 585-601.
    26. Ćosić, Boris & Krajačić, Goran & Duić, Neven, 2012. "A 100% renewable energy system in the year 2050: The case of Macedonia," Energy, Elsevier, vol. 48(1), pages 80-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikova, Nadezhda & Eichhammer, Wolfgang & Pfluger, Benjamin, 2019. "Low-carbon energy scenarios 2050 in north-west European countries: Towards a more harmonised approach to achieve the EU targets," Energy Policy, Elsevier, vol. 130(C), pages 448-460.
    2. Xie, Jia Yu & Suh, Dong Hee, 2021. "Examining the Determinants of Air Pollution: Implications of Economic Growth and Renewable Energy Consumption," 2021 Annual Meeting, August 1-3, Austin, Texas 313892, Agricultural and Applied Economics Association.
    3. Frauke Wiese, 2016. "Resilience Thinking as an Interdisciplinary Guiding Principle for Energy System Transitions," Resources, MDPI, vol. 5(4), pages 1-17, September.
    4. Guandalini, Giulio & Campanari, Stefano & Romano, Matteo C., 2015. "Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment," Applied Energy, Elsevier, vol. 147(C), pages 117-130.
    5. Shahbaz, Muhammad & Raghutla, Chandrashekar & Chittedi, Krishna Reddy & Jiao, Zhilun & Vo, Xuan Vinh, 2020. "The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index," Energy, Elsevier, vol. 207(C).
    6. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    7. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    8. Bocca, Alberto & Bottaccioli, Lorenzo & Chiavazzo, Eliodoro & Fasano, Matteo & Macii, Alberto & Asinari, Pietro, 2016. "Estimating photovoltaic energy potential from a minimal set of randomly sampled data," Renewable Energy, Elsevier, vol. 97(C), pages 457-467.
    9. Franki, Vladimir & Višković, Alfredo, 2021. "Multi-criteria decision support: A case study of Southeast Europe power systems," Utilities Policy, Elsevier, vol. 73(C).
    10. Shirin Kahremany & Lukas Hofmann & Noy Eretz-Kdosha & Eldad Silberstein & Arie Gruzman & Guy Cohen, 2021. "SH-29 and SK-119 Attenuates Air-Pollution Induced Damage by Activating Nrf2 in HaCaT Cells," IJERPH, MDPI, vol. 18(23), pages 1-16, November.
    11. Leonard Goke & Jens Weibezahn & Christian von Hirschhausen, 2021. "A collective blueprint, not a crystal ball: How expectations and participation shape long-term energy scenarios," Papers 2112.04821, arXiv.org, revised Dec 2022.
    12. Michael Wessel & Reinhard Madlener & Christoph Hilgers, 2020. "Economic Feasibility of Semi-Underground Pumped Storage Hydropower Plants in Open-Pit Mines," Energies, MDPI, vol. 13(16), pages 1-38, August.
    13. Vo, Truc T.Q. & Rajendran, Karthik & Murphy, Jerry D., 2018. "Can power to methane systems be sustainable and can they improve the carbon intensity of renewable methane when used to upgrade biogas produced from grass and slurry?," Applied Energy, Elsevier, vol. 228(C), pages 1046-1056.
    14. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    15. Halabi, Laith M. & Mekhilef, Saad & Hossain, Monowar, 2018. "Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation," Applied Energy, Elsevier, vol. 213(C), pages 247-261.
    16. Bhattacharya, Mita & Paramati, Sudharshan Reddy & Ozturk, Ilhan & Bhattacharya, Sankar, 2016. "The effect of renewable energy consumption on economic growth: Evidence from top 38 countries," Applied Energy, Elsevier, vol. 162(C), pages 733-741.
    17. Renn, Ortwin & Marshall, Jonathan Paul, 2016. "Coal, nuclear and renewable energy policies in Germany: From the 1950s to the “Energiewende”," Energy Policy, Elsevier, vol. 99(C), pages 224-232.
    18. Vinnemeier, Philipp & Wirsum, Manfred & Malpiece, Damien & Bove, Roberto, 2016. "Integration of heat pumps into thermal plants for creation of large-scale electricity storage capacities," Applied Energy, Elsevier, vol. 184(C), pages 506-522.
    19. Carballo, Jose A. & Bonilla, Javier & Berenguel, Manuel & Fernández-Reche, Jesús & García, Ginés, 2019. "New approach for solar tracking systems based on computer vision, low cost hardware and deep learning," Renewable Energy, Elsevier, vol. 133(C), pages 1158-1166.
    20. Charlotte Senkpiel & Wolfgang Hauser, 2020. "Systemic Evaluation of the Effects of Regional Self-Supply Targets on the German Electricity System Using Consistent Scenarios and System Optimization," Energies, MDPI, vol. 13(18), pages 1-26, September.
    21. Nikola Krečar & Andrej F. Gubina, 2020. "Risk mitigation in the electricity market driven by new renewable energy sources," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    22. Barry W. Brook & Tom Blees & Tom M. L. Wigley & Sanghyun Hong, 2018. "Silver Buckshot or Bullet: Is a Future “Energy Mix” Necessary?," Sustainability, MDPI, vol. 10(2), pages 1-14, January.
    23. Akintande, Olalekan J. & Olubusoye, Olusanya E. & Adenikinju, Adeola F. & Olanrewaju, Busayo T., 2020. "Modeling the determinants of renewable energy consumption: Evidence from the five most populous nations in Africa," Energy, Elsevier, vol. 206(C).
    24. Xiao, Lin & Guan, Yuru & Guo, Yaqin & Xue, Rui & Li, Jiashuo & Shan, Yuli, 2022. "Emission accounting and drivers in 2004 EU accession countries," Applied Energy, Elsevier, vol. 314(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    2. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    3. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    4. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2014. "Comparing least cost scenarios for 100% renewable electricity with low emission fossil fuel scenarios in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 66(C), pages 196-204.
    5. Wu, Yunyang & Reedman, Luke J. & Barrett, Mark A. & Spataru, Catalina, 2018. "Comparison of CST with different hours of storage in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 122(C), pages 487-496.
    6. Yousefzadeh, Moslem & Lenzen, Manfred, 2019. "Performance of concentrating solar power plants in a whole-of-grid context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    8. Jacobson, Mark Z. & Delucchi, Mark A. & Ingraffea, Anthony R. & Howarth, Robert W. & Bazouin, Guillaume & Bridgeland, Brett & Burkart, Karl & Chang, Martin & Chowdhury, Navid & Cook, Roy & Escher, Giu, 2014. "A roadmap for repowering California for all purposes with wind, water, and sunlight," Energy, Elsevier, vol. 73(C), pages 875-889.
    9. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    10. Deason, Wesley, 2018. "Comparison of 100% renewable energy system scenarios with a focus on flexibility and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3168-3178.
    11. Riesz, Jenny & Elliston, Ben, 2016. "Research and deployment priorities for renewable technologies: Quantifying the importance of various renewable technologies for low cost, high renewable electricity systems in an Australian case study," Energy Policy, Elsevier, vol. 98(C), pages 298-308.
    12. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    13. Martin Robinius & Alexander Otto & Philipp Heuser & Lara Welder & Konstantinos Syranidis & David S. Ryberg & Thomas Grube & Peter Markewitz & Ralf Peters & Detlef Stolten, 2017. "Linking the Power and Transport Sectors—Part 1: The Principle of Sector Coupling," Energies, MDPI, vol. 10(7), pages 1-22, July.
    14. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    16. Kiwan, Suhil & Al-Gharibeh, Elyasa, 2020. "Jordan toward a 100% renewable electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 423-436.
    17. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2013. "Least cost 100% renewable electricity scenarios in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 270-282.
    18. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    19. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    20. Jacobson, Mark Z. & Howarth, Robert W. & Delucchi, Mark A. & Scobie, Stan R. & Barth, Jannette M. & Dvorak, Michael J. & Klevze, Megan & Katkhuda, Hind & Miranda, Brian & Chowdhury, Navid A. & Jones, , 2013. "Response to comment on paper examining the feasibility of changing New York state's energy infrastructure to one derived from wind, water, and sunlight," Energy Policy, Elsevier, vol. 62(C), pages 1212-1215.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:4:y:2015:i:1:p:74-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.