IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v44y2012i1p986-995.html
   My bibliography  Save this article

Economic and environmental analysis of power generation expansion in Japan considering Fukushima nuclear accident using a multi-objective optimization model

Author

Listed:
  • Zhang, Qi
  • Mclellan, Benjamin C.
  • Tezuka, Tetsuo
  • Ishihara, Keiichi N.

Abstract

Nuclear power has long been a cornerstone of energy policy in Japan, a country with few natural resources of its own. However, following on from the Fukushima Daiichi accident, the Japanese government is now in the throes of reviewing its nuclear power policy. On the other hand, under continuing policies of greenhouse gas reduction, it is crucial to consider scenarios for the country to realize an economic, safe and low-carbon power generation system in the future. Therefore, in the present study, economic and environmental analysis was conducted on the power generation system in Japan up to 2030 using a multi-objective optimization methodology. Four nuclear power scenarios were proposed in light of the nuclear accident: (1) actively anti-nuclear; (2) passively negative towards nuclear; (3) conservative towards nuclear; and (4) active expansion of nuclear power. The obtained capacity mix, generation mix, generation cost, CO2 emissions and fuel consumption of the scenarios were compared and analysed. The obtained results show that the large scale penetration of PV (photovoltaic), wind and LNG (Liquefied Natural Gas) power can partly replace nuclear power, however, removing nuclear power entirely was not suggested from economic, environmental and energy security perspectives.

Suggested Citation

  • Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2012. "Economic and environmental analysis of power generation expansion in Japan considering Fukushima nuclear accident using a multi-objective optimization model," Energy, Elsevier, vol. 44(1), pages 986-995.
  • Handle: RePEc:eee:energy:v:44:y:2012:i:1:p:986-995
    DOI: 10.1016/j.energy.2012.04.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212003490
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.04.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antunes, C.Henggeler & Martins, A.Gomes & Brito, Isabel Sofia, 2004. "A multiple objective mixed integer linear programming model for power generation expansion planning," Energy, Elsevier, vol. 29(4), pages 613-627.
    2. Ren, Hongbo & Zhou, Weisheng & Nakagami, Ken'ichi & Gao, Weijun & Wu, Qiong, 2010. "Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 87(12), pages 3642-3651, December.
    3. Foley, A.M. & Ó Gallachóir, B.P. & Hur, J. & Baldick, R. & McKeogh, E.J., 2010. "A strategic review of electricity systems models," Energy, Elsevier, vol. 35(12), pages 4522-4530.
    4. Heinrich, G. & Basson, L. & Cohen, B. & Howells, M. & Petrie, J., 2007. "Ranking and selection of power expansion alternatives for multiple objectives under uncertainty," Energy, Elsevier, vol. 32(12), pages 2350-2369.
    5. Heinrich, G. & Howells, M. & Basson, L. & Petrie, J., 2007. "Electricity supply industry modelling for multiple objectives under demand growth uncertainty," Energy, Elsevier, vol. 32(11), pages 2210-2229.
    6. Nakata, T, 2002. "Analysis of the impacts of nuclear phase-out on energy systems in Japan," Energy, Elsevier, vol. 27(4), pages 363-377.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kosugi, Takanobu, 2016. "Endogenizing the probability of nuclear exit in an optimal power-generation mix model," Energy, Elsevier, vol. 100(C), pages 102-114.
    2. Bernstein, David H. & Parmeter, Christopher F. & Tsionas, Mike G., 2023. "On the performance of the United States nuclear power sector: A Bayesian approach," Energy Economics, Elsevier, vol. 125(C).
    3. Sadeghi, Hadi & Rashidinejad, Masoud & Abdollahi, Amir, 2017. "A comprehensive sequential review study through the generation expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1369-1394.
    4. Esteban, Miguel & Portugal-Pereira, Joana & Mclellan, Benjamin C. & Bricker, Jeremy & Farzaneh, Hooman & Djalilova, Nigora & Ishihara, Keiichi N. & Takagi, Hiroshi & Roeber, Volker, 2018. "100% renewable energy system in Japan: Smoothening and ancillary services," Applied Energy, Elsevier, vol. 224(C), pages 698-707.
    5. Koltsaklis, Nikolaos E. & Liu, Pei & Georgiadis, Michael C., 2015. "An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response," Energy, Elsevier, vol. 82(C), pages 865-888.
    6. Kawaguchi, Daiji & Yukutake, Norifumi, 2017. "Estimating the residential land damage of the Fukushima nuclear accident," Journal of Urban Economics, Elsevier, vol. 99(C), pages 148-160.
    7. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    8. Bricker, Jeremy D. & Esteban, Miguel & Takagi, Hiroshi & Roeber, Volker, 2017. "Economic feasibility of tidal stream and wave power in post-Fukushima Japan," Renewable Energy, Elsevier, vol. 114(PA), pages 32-45.
    9. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "An integrated model for long-term power generation planning toward future smart electricity systems," Applied Energy, Elsevier, vol. 112(C), pages 1424-1437.
    10. Hsiao, Cody Yu-Ling & Chen, Hsing Hung, 2018. "The contagious effects on economic development after resuming construction policy for nuclear power plants in Coastal China," Energy, Elsevier, vol. 152(C), pages 291-302.
    11. Esteban, Miguel & Portugal-Pereira, Joana, 2014. "Post-disaster resilience of a 100% renewable energy system in Japan," Energy, Elsevier, vol. 68(C), pages 756-764.
    12. Atabaki, Mohammad Saeid & Aryanpur, Vahid, 2018. "Multi-objective optimization for sustainable development of the power sector: An economic, environmental, and social analysis of Iran," Energy, Elsevier, vol. 161(C), pages 493-507.
    13. Pratama, Yoga Wienda & Purwanto, Widodo Wahyu & Tezuka, Tetsuo & McLellan, Benjamin Craig & Hartono, Djoni & Hidayatno, Akhmad & Daud, Yunus, 2017. "Multi-objective optimization of a multiregional electricity system in an archipelagic state: The role of renewable energy in energy system sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 423-439.
    14. Ferreira, Helder Lopes & Garde, Raquel & Fulli, Gianluca & Kling, Wil & Lopes, Joao Pecas, 2013. "Characterisation of electrical energy storage technologies," Energy, Elsevier, vol. 53(C), pages 288-298.
    15. Su, Xuanming & Zhou, Weisheng & Sun, Faming & Nakagami, Ken'Ichi, 2014. "Possible pathways for dealing with Japan's post-Fukushima challenge and achieving CO2 emission reduction targets in 2030," Energy, Elsevier, vol. 66(C), pages 90-97.
    16. Finke, Jonas & Bertsch, Valentin, 2023. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," Applied Energy, Elsevier, vol. 332(C).
    17. Kwak, Kiho & Yoon, Hyungseok (David), 2020. "Unpacking transnational industry legitimacy dynamics, windows of opportunity, and latecomers’ catch-up in complex product systems," Research Policy, Elsevier, vol. 49(4).
    18. KAWAGUCHI, Daiji & 川口, 大司 & YUKUTAKE, Norifumi & 行武, 憲史, 2014. "Estimating the Residential Land Damage of the Fukushima Accident," Discussion Papers 2014-18, Graduate School of Economics, Hitotsubashi University.
    19. Homma, Takashi & Akimoto, Keigo, 2013. "Analysis of Japan's energy and environment strategy after the Fukushima nuclear plant accident," Energy Policy, Elsevier, vol. 62(C), pages 1216-1225.
    20. Wang, Ge & Zhang, Qi & Mclellan, Benjamin C. & Li, Hailong, 2016. "Multi-region optimal deployment of renewable energy considering different interregional transmission scenarios," Energy, Elsevier, vol. 108(C), pages 108-118.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atabaki, Mohammad Saeid & Aryanpur, Vahid, 2018. "Multi-objective optimization for sustainable development of the power sector: An economic, environmental, and social analysis of Iran," Energy, Elsevier, vol. 161(C), pages 493-507.
    2. Morgan Bazilian & Patrick Nussbaumer & Hans-Holger Rogner & Abeeku Brew-Hammond & Vivien Foster & Shonali Pachauri & Eric Williams & Mark Howells & Philippe Niyongabo & Lawrence Musaba & Brian Ó Galla, 2011. "Energy Access Scenarios to 2030 for the Power Sector in Sub-Saharan Africa," Working Papers 2011.68, Fondazione Eni Enrico Mattei.
    3. Nir Becker & David Soloveitchik & Moshe Olshansky, 2012. "A Weighted Average Incorporation of Pollution Costs into the Electrical Expansion Planning," Energy & Environment, , vol. 23(1), pages 1-15, January.
    4. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    5. Hu, Qing & Huang, Guohe & Cai, Yanpeng & Huang, Ying, 2011. "Feasibility-based inexact fuzzy programming for electric power generation systems planning under dual uncertainties," Applied Energy, Elsevier, vol. 88(12), pages 4642-4654.
    6. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "An integrated model for long-term power generation planning toward future smart electricity systems," Applied Energy, Elsevier, vol. 112(C), pages 1424-1437.
    7. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    8. Heinrich, G. & Basson, L. & Cohen, B. & Howells, M. & Petrie, J., 2007. "Ranking and selection of power expansion alternatives for multiple objectives under uncertainty," Energy, Elsevier, vol. 32(12), pages 2350-2369.
    9. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2019. "A multi-objective framework for long-term generation expansion planning with variable renewables," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Li, G.C. & Huang, G.H. & Lin, Q.G. & Zhang, X.D. & Tan, Q. & Chen, Y.M., 2011. "Development of a GHG-mitigation oriented inexact dynamic model for regional energy system management," Energy, Elsevier, vol. 36(5), pages 3388-3398.
    11. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2016. "Optimization modeling to support renewables integration in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 316-325.
    12. Beck, Jessica & Kempener, Ruud & Cohen, Brett & Petrie, Jim, 2008. "A complex systems approach to planning, optimization and decision making for energy networks," Energy Policy, Elsevier, vol. 36(8), pages 2803-2813, August.
    13. Schell, Kristen R. & Claro, João & Fischbeck, Paul, 2015. "Geographic attribution of an electricity system renewable energy target: Local economic, social and environmental tradeoffs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 884-902.
    14. Koppelaar, Rembrandt H.E.M. & Keirstead, James & Shah, Nilay & Woods, Jeremy, 2016. "A review of policy analysis purpose and capabilities of electricity system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1531-1544.
    15. Zhang, Qi & Ishihara, Keiichi N. & Mclellan, Benjamin C. & Tezuka, Tetsuo, 2012. "Scenario analysis on future electricity supply and demand in Japan," Energy, Elsevier, vol. 38(1), pages 376-385.
    16. Koltsaklis, Nikolaos E. & Liu, Pei & Georgiadis, Michael C., 2015. "An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response," Energy, Elsevier, vol. 82(C), pages 865-888.
    17. Wang, S. & Xie, Y.L. & Huang, G.H. & Yao, Y. & Wang, S.Y. & Li, Y.F., 2021. "A Structural Adjustment optimization model for electric-power system management under multiple Uncertainties—A case study of Urumqi city, China," Energy Policy, Elsevier, vol. 149(C).
    18. Trotter, Philipp A. & Cooper, Nathanial J. & Wilson, Peter R., 2019. "A multi-criteria, long-term energy planning optimisation model with integrated on-grid and off-grid electrification – The case of Uganda," Applied Energy, Elsevier, vol. 243(C), pages 288-312.
    19. Bazilian, Morgan & Hobbs, Benjamin F. & Blyth, Will & MacGill, Iain & Howells, Mark, 2011. "Interactions between energy security and climate change: A focus on developing countries," Energy Policy, Elsevier, vol. 39(6), pages 3750-3756, June.
    20. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:44:y:2012:i:1:p:986-995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.