IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v115y2018icp302-316.html
   My bibliography  Save this article

Assessment of renewable energy expansion potential and its implications on reforming Japan's electricity system

Author

Listed:
  • Wakiyama, Takako
  • Kuriyama, Akihisa

Abstract

This study assesses the regional energy mix potentials of Japan for maximised renewable electricity generation and reduced CO2 emission intensity in the electricity sector, in view of the nationally determined contribution (NDC) mitigation target, and the 2°C rise limit target. Beginning with the deregulation of the retail electricity market, discussions have been initiated about Japanese electricity system reforms towards 2020. This paper examines the potential energy mix up to 2030 at the regional level, and identifies the need to accelerate electricity system reforms to expand the transregional access to renewable electricity generation. By analysing available data, we assess how regional renewable energy potentials can be put to effective use, and identify how electricity reform should proceed, to both capitalise on renewables and reduce carbon intensity. Finally, we report the large renewable potentials in Japan. However, in order to maximise the use of these potentials, a combination of technologies and policies are required to promote flexible grid operation, and strengthen transmission capacity and renewable priority dispatch order, as well as to introduce technology for stabilizing electricity systems supplied by renewable electricity, such as pumped storage hydropower, storage cells, and demand-response, which can store surplus energy until it is needed.

Suggested Citation

  • Wakiyama, Takako & Kuriyama, Akihisa, 2018. "Assessment of renewable energy expansion potential and its implications on reforming Japan's electricity system," Energy Policy, Elsevier, vol. 115(C), pages 302-316.
  • Handle: RePEc:eee:enepol:v:115:y:2018:i:c:p:302-316
    DOI: 10.1016/j.enpol.2018.01.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518300326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.01.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blazejczak, Jürgen & Braun, Frauke G. & Edler, Dietmar & Schill, Wolf-Peter, 2014. "Economic effects of renewable energy expansion: A model-based analysis for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1070-1080.
    2. Tsuchiya, Haruki, 2012. "Electricity supply largely from solar and wind resources in Japan," Renewable Energy, Elsevier, vol. 48(C), pages 318-325.
    3. Heymi Bahar & Jehan Sauvage, 2013. "Cross-Border Trade in Electricity and the Development of Renewables-Based Electric Power: Lessons from Europe," OECD Trade and Environment Working Papers 2013/2, OECD Publishing.
    4. Huenteler, Joern & Schmidt, Tobias S. & Kanie, Norichika, 2012. "Japan's post-Fukushima challenge – implications from the German experience on renewable energy policy," Energy Policy, Elsevier, vol. 45(C), pages 6-11.
    5. Komiyama, Ryoichi & Fujii, Yasumasa, 2017. "Assessment of post-Fukushima renewable energy policy in Japan's nation-wide power grid," Energy Policy, Elsevier, vol. 101(C), pages 594-611.
    6. Roth, Michael Buchdahl & Jaramillo, Paulina, 2017. "Going nuclear for climate mitigation: An analysis of the cost effectiveness of preserving existing U.S. nuclear power plants as a carbon avoidance strategy," Energy, Elsevier, vol. 131(C), pages 67-77.
    7. Al-musleh, Easa I. & Mallapragada, Dharik S. & Agrawal, Rakesh, 2014. "Continuous power supply from a baseload renewable power plant," Applied Energy, Elsevier, vol. 122(C), pages 83-93.
    8. Pfenninger, Stefan & Keirstead, James, 2015. "Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security," Applied Energy, Elsevier, vol. 152(C), pages 83-93.
    9. Elliston, Ben & Diesendorf, Mark & MacGill, Iain, 2012. "Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 45(C), pages 606-613.
    10. Komiyama, Ryoichi & Fujii, Yasumasa, 2014. "Assessment of massive integration of photovoltaic system considering rechargeable battery in Japan with high time-resolution optimal power generation mix model," Energy Policy, Elsevier, vol. 66(C), pages 73-89.
    11. Oecd, 2011. "Procurement by Utilities," SIGMA Public Procurement Briefs 16, OECD Publishing.
    12. Muhammad-Sukki, Firdaus & Abu-Bakar, Siti Hawa & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Ramirez-Iniguez, Roberto & McMeekin, Scott G. & Stewart, Brian G. & Sarmah, Nabin & Mallick, Tapas Kumar & , 2014. "Feed-in tariff for solar photovoltaic: The rise of Japan," Renewable Energy, Elsevier, vol. 68(C), pages 636-643.
    13. Wilson, Nathan E. & Palmer, Karen L. & Burtraw, Dallas, 2005. "The Impact of Long-Term Generation Contracts on Valuation of Electricity Generating Assets under the Regional Greenhouse Gas Initiative," Discussion Papers 10556, Resources for the Future.
    14. Vivoda, Vlado, 2012. "Japan’s energy security predicament post-Fukushima," Energy Policy, Elsevier, vol. 46(C), pages 135-143.
    15. Mai Inoue & Yutaka Genchi & Yuki Kudoh, 2017. "Evaluating the Potential of Variable Renewable Energy for a Balanced Isolated Grid: A Japanese Case Study," Sustainability, MDPI, vol. 9(1), pages 1-15, January.
    16. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    17. Karakosta, Charikleia & Pappas, Charalampos & Marinakis, Vangelis & Psarras, John, 2013. "Renewable energy and nuclear power towards sustainable development: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 187-197.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rikkonen, Pasi & Tapio, Petri & Rintamäki, Heidi, 2019. "Visions for small-scale renewable energy production on Finnish farms – A Delphi study on the opportunities for new business," Energy Policy, Elsevier, vol. 129(C), pages 939-948.
    2. Knuepfer, K. & Rogalski, N. & Knuepfer, A. & Esteban, M. & Shibayama, T., 2022. "A reliable energy system for Japan with merit order dispatch, high variable renewable share and no nuclear power," Applied Energy, Elsevier, vol. 328(C).
    3. Li, Aitong & Xu, Yuan & Shiroyama, Hideaki, 2019. "Solar lobby and energy transition in Japan," Energy Policy, Elsevier, vol. 134(C).
    4. Li, Yanxue & Gao, Weijun & Ruan, Yingjun & Ushifusa, Yoshiaki, 2018. "The performance investigation of increasing share of photovoltaic generation in the public grid with pump hydro storage dispatch system, a case study in Japan," Energy, Elsevier, vol. 164(C), pages 811-821.
    5. Liu, Shiyu & Bie, Zhaohong & Lin, Jiang & Wang, Xifan, 2018. "Curtailment of renewable energy in Northwest China and market-based solutions," Energy Policy, Elsevier, vol. 123(C), pages 494-502.
    6. Harada, Kosuke & Yabe, Kuniaki & Takami, Hirofumi & Goto, Akira & Sato, Yasushi & Hayashi, Yasuhiro, 2023. "Two-step approach for quasi-optimization of energy storage and transportation at renewable energy site," Renewable Energy, Elsevier, vol. 211(C), pages 846-858.
    7. Itiki, Rodney & Manjrekar, Madhav & Di Santo, Silvio Giuseppe & Machado, Luis Fernando M., 2020. "Technical feasibility of Japan-Taiwan-Philippines HVdc interconnector to the Asia Pacific Super Grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Hisao Kibune, 2019. "Regulatory reform of energy and economic growth in Japan," International Journal of Economic Policy Studies, Springer, vol. 13(1), pages 27-41, January.
    9. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    10. Gao, Lu & Hiruta, Yuki & Ashina, Shuichi, 2020. "Promoting renewable energy through willingness to pay for transition to a low carbon society in Japan," Renewable Energy, Elsevier, vol. 162(C), pages 818-830.
    11. Kuriyama, Akihisa & Abe, Naoya, 2021. "Decarbonisation of the power sector to engender a ‘Just transition’ in Japan: Quantifying local employment impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Siyu Zhang & Liusan Wu & Ming Cheng & Dongqing Zhang, 2022. "Prediction of Whole Social Electricity Consumption in Jiangsu Province Based on Metabolic FGM (1, 1) Model," Mathematics, MDPI, vol. 10(11), pages 1-14, May.
    13. Fanyue Qian & Weijun Gao & Dan Yu & Yongwen Yang & Yingjun Ruan, 2022. "An Analysis of the Potential of Hydrogen Energy Technology on Demand Side Based on a Carbon Tax: A Case Study in Japan," Energies, MDPI, vol. 16(1), pages 1-23, December.
    14. Foday Conteh & Hiroshi Takahashi & Ashraf Mohamed Hemeida & Narayanan Krishnan & Alexey Mikhaylov & Tomonobu Senjyu, 2021. "Analysis of Hybrid Grid-Connected Renewable Power Generation for Sustainable Electricity Supply in Sierra Leone," Sustainability, MDPI, vol. 13(20), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yanxue & Gao, Weijun & Ruan, Yingjun & Ushifusa, Yoshiaki, 2018. "The performance investigation of increasing share of photovoltaic generation in the public grid with pump hydro storage dispatch system, a case study in Japan," Energy, Elsevier, vol. 164(C), pages 811-821.
    2. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    3. Komiyama, Ryoichi & Fujii, Yasumasa, 2019. "Optimal integration assessment of solar PV in Japan’s electric power grid," Renewable Energy, Elsevier, vol. 139(C), pages 1012-1028.
    4. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    5. Knuepfer, K. & Rogalski, N. & Knuepfer, A. & Esteban, M. & Shibayama, T., 2022. "A reliable energy system for Japan with merit order dispatch, high variable renewable share and no nuclear power," Applied Energy, Elsevier, vol. 328(C).
    6. Kiwan, Suhil & Al-Gharibeh, Elyasa, 2020. "Jordan toward a 100% renewable electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 423-436.
    7. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2018. "A quantitative analysis of Japan's optimal power generation mix in 2050 and the role of CO2-free hydrogen," Energy, Elsevier, vol. 165(PB), pages 1200-1219.
    8. Lu, Bin & Blakers, Andrew & Stocks, Matthew, 2017. "90–100% renewable electricity for the South West Interconnected System of Western Australia," Energy, Elsevier, vol. 122(C), pages 663-674.
    9. Mihaela Simionescu & Yuriy Bilan & Emília Krajňáková & Dalia Streimikiene & Stanisław Gędek, 2019. "Renewable Energy in the Electricity Sector and GDP per Capita in the European Union," Energies, MDPI, vol. 12(13), pages 1-15, June.
    10. Gyanwali, Khem & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Representing hydropower in the dynamic power sector model and assessing clean energy deployment in the power generation mix of Nepal," Energy, Elsevier, vol. 202(C).
    11. Trencher, Gregory & Healy, Noel & Hasegawa, Koichi & Asuka, Jusen, 2019. "Discursive resistance to phasing out coal-fired electricity: Narratives in Japan's coal regime," Energy Policy, Elsevier, vol. 132(C), pages 782-796.
    12. Zhao, Ning & You, Fengqi, 2020. "Can renewable generation, energy storage and energy efficient technologies enable carbon neutral energy transition?," Applied Energy, Elsevier, vol. 279(C).
    13. Portugal-Pereira, J. & Ferreira, P. & Cunha, J. & Szklo, A. & Schaeffer, R. & Araújo, M., 2018. "Better late than never, but never late is better: Risk assessment of nuclear power construction projects," Energy Policy, Elsevier, vol. 120(C), pages 158-166.
    14. Sun, Chuanwang & Zhu, Xiting & Meng, Xiaochun, 2016. "Post-Fukushima public acceptance on resuming the nuclear power program in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 685-694.
    15. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
    16. Guidolin, Mariangela & Guseo, Renato, 2016. "The German energy transition: Modeling competition and substitution between nuclear power and Renewable Energy Technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1498-1504.
    17. Su, Xuanming & Zhou, Weisheng & Sun, Faming & Nakagami, Ken'Ichi, 2014. "Possible pathways for dealing with Japan's post-Fukushima challenge and achieving CO2 emission reduction targets in 2030," Energy, Elsevier, vol. 66(C), pages 90-97.
    18. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    19. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    20. de Jong, Pieter & Kiperstok, Asher & Sánchez, Antonio Santos & Dargaville, Roger & Torres, Ednildo Andrade, 2016. "Integrating large scale wind power into the electricity grid in the Northeast of Brazil," Energy, Elsevier, vol. 100(C), pages 401-415.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:115:y:2018:i:c:p:302-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.