IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v120y2018icp24-37.html
   My bibliography  Save this article

Can India grow and live within a 1.5 degree CO2 emissions budget?

Author

Listed:
  • Parikh, Kirit S.
  • Parikh, Jyoti K.
  • Ghosh, Probal P.

Abstract

The world of 1.5 degree C requires a global compact and action. Assuming that a fair allocation of global emissions space is made, the question arises can India live within that space? What kind of technological innovations are needed to make it possible? What would be the consequences of such a path for human welfare in India? The model has 25 goods and services and 38 alternative production activities reflecting different technologies to produce these goods or services. The model provides for social welfare measures by the government. The paper explores the consequences of different technological futures and policy regimes using a multi-sectoral inter temporal dynamic optimizing model with endogenous demand. With endogenous income distribution and 20 different consumer classes effects of heterogeneity are accounted. Reductions in costs of renewable power and batteries are stipulated based on projections by various researchers. Also targets for energy efficiency are based on past experience. The scenarios show the importance of technical progress for India can meet its human development goals within a fair emission limit.

Suggested Citation

  • Parikh, Kirit S. & Parikh, Jyoti K. & Ghosh, Probal P., 2018. "Can India grow and live within a 1.5 degree CO2 emissions budget?," Energy Policy, Elsevier, vol. 120(C), pages 24-37.
  • Handle: RePEc:eee:enepol:v:120:y:2018:i:c:p:24-37
    DOI: 10.1016/j.enpol.2018.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518303057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisher-Vanden, K. A. & Shukla, P. R. & Edmonds, J. A. & Kim, S. H. & Pitcher, H. M., 1997. "Carbon taxes and India," Energy Economics, Elsevier, vol. 19(3), pages 289-325, July.
    2. Nag, Barnali & Parikh, Jyoti K., 2005. "Carbon emission coefficient of power consumption in India: baseline determination from the demand side," Energy Policy, Elsevier, vol. 33(6), pages 777-786, April.
    3. Chen, Huayi & Ma, Tieju, 2017. "Optimizing systematic technology adoption with heterogeneous agents," European Journal of Operational Research, Elsevier, vol. 257(1), pages 287-296.
    4. Mundaca, Luis & Román, Rocio & Cansino, José M., 2015. "Towards a Green Energy Economy? A macroeconomic-climate evaluation of Sweden’s CO2 emissions," Applied Energy, Elsevier, vol. 148(C), pages 196-209.
    5. Parikh, Kirit S. & Parikh, Jyoti K., 2016. "Realizing potential savings of energy and emissions from efficient household appliances in India," Energy Policy, Elsevier, vol. 97(C), pages 102-111.
    6. Parikh, Kirit S. & Karandikar, Vivek & Rana, Ashish & Dani, Prasanna, 2009. "Projecting India's energy requirements for policy formulation," Energy, Elsevier, vol. 34(8), pages 928-941.
    7. Parikh, Kirit S. & Ghosh, Probal & D'Souza, Alwin & Binswanger-Mkhize, Hans P., 2016. "Consumer Demand System for Long Term Projections," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 71(2), June.
    8. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    9. Noah Kittner & Felix Lill & Daniel M. Kammen, 2017. "Energy storage deployment and innovation for the clean energy transition," Nature Energy, Nature, vol. 2(9), pages 1-6, September.
    10. Mishra, Gouri Shankar & Zakerinia, Saleh & Yeh, Sonia & Teter, Jacob & Morrison, Geoff, 2014. "Mitigating climate change: Decomposing the relative roles of energy conservation, technological change, and structural shift," Energy Economics, Elsevier, vol. 44(C), pages 448-455.
    11. Kesicki, Fabian & Anandarajah, Gabrial, 2011. "The role of energy-service demand reduction in global climate change mitigation: Combining energy modelling and decomposition analysis," Energy Policy, Elsevier, vol. 39(11), pages 7224-7233.
    12. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    13. Shunichi Hienuki & Yuki Kudoh & Hiroki Hondo, 2015. "Establishing a Framework for Evaluating Environmental and Socio-Economic Impacts by Power Generation Technology Using an Input–output Table—A Case Study of Japanese Future Electricity Grid Mix," Sustainability, MDPI, vol. 7(12), pages 1-18, November.
    14. Sabine Fuss & Josep G. Canadell & Glen P. Peters & Massimo Tavoni & Robbie M. Andrew & Philippe Ciais & Robert B. Jackson & Chris D. Jones & Florian Kraxner & Nebosja Nakicenovic & Corinne Le Quéré & , 2014. "Betting on negative emissions," Nature Climate Change, Nature, vol. 4(10), pages 850-853, October.
    15. Gurushri Swamy & Hans P. Binswanger, 1983. "Flexible Consumer Demand Systems and Linear Estimation: Food in India," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 65(4), pages 675-684.
    16. Urban, F. & Benders, R.M.J. & Moll, H.C., 2007. "Modelling energy systems for developing countries," Energy Policy, Elsevier, vol. 35(6), pages 3473-3482, June.
    17. Zhi-Fu Mi & Yi-Ming Wei & Bing Wang & Jing Meng & Zhu Liu & Yuli Shan & Jingru Liu & Dabo Guan, 2017. "Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030," CEEP-BIT Working Papers 103, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    18. Hartwig, Johannes & Kockat, Judit & Schade, Wolfgang & Braungardt, Sibylle, 2017. "The macroeconomic effects of ambitious energy efficiency policy in Germany – Combining bottom-up energy modelling with a non-equilibrium macroeconomic model," Energy, Elsevier, vol. 124(C), pages 510-520.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nirvikar Singh, 2022. "India’s Strategy for Achieving Net Zero," Energies, MDPI, vol. 15(16), pages 1-11, August.
    2. Laha, Priyanka & Chakraborty, Basab & Østergaard, Poul Alberg, 2020. "Electricity system scenario development of India with import independence in 2030," Renewable Energy, Elsevier, vol. 151(C), pages 627-639.
    3. Ali, Muhammad Rizwan & Shafiq, Muhammad, 2021. "Revealing expert perspectives on challenges to electricity Demand-Side Management in Pakistan: An application of Q-Methodology," Utilities Policy, Elsevier, vol. 70(C).
    4. Parikh, Kirit S., 2020. "019," Ecology, Economy and Society - the INSEE Journal, Indian Society of Ecological Economics (INSEE), vol. 3(02), July.
    5. Akshay Jaitly & Ajay Shah, 2021. "The lowest hanging fruit on the coconut tree: India's climate transition through the price system in the power sector," Working Papers 9, xKDR.
    6. Aritra Ghosh, 2020. "Soiling Losses: A Barrier for India’s Energy Security Dependency from Photovoltaic Power," Challenges, MDPI, vol. 11(1), pages 1-22, May.
    7. Ritu Mathur & Swapnil Shekhar, 2020. "India’s energy sector choices—options and implications of ambitious mitigation efforts," Climatic Change, Springer, vol. 162(4), pages 1893-1911, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    2. Renaldi, Renaldi & Hall, Richard & Jamasb, Tooraj & Roskilly, Anthony P., 2021. "Experience rates of low-carbon domestic heating technologies in the United Kingdom," Energy Policy, Elsevier, vol. 156(C).
    3. Ranjit R. Desai & Eric Hittinger & Eric Williams, 2022. "Interaction of Consumer Heterogeneity and Technological Progress in the US Electric Vehicle Market," Energies, MDPI, vol. 15(13), pages 1-25, June.
    4. Gunther Glenk & Rebecca Meier & Stefan Reichelstein, 2021. "Cost Dynamics of Clean Energy Technologies," Schmalenbach Journal of Business Research, Springer, vol. 73(2), pages 179-206, June.
    5. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    6. Mengzhu Xiao & Manuel Wetzel & Thomas Pregger & Sonja Simon & Yvonne Scholz, 2020. "Modeling the Supply of Renewable Electricity to Metropolitan Regions in China," Energies, MDPI, vol. 13(12), pages 1-31, June.
    7. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    8. Helm, Carsten & Mier, Mathias, 2021. "Steering the energy transition in a world of intermittent electricity supply: Optimal subsidies and taxes for renewables and storage," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    9. Christian Breyer & Mahdi Fasihi & Arman Aghahosseini, 2020. "Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(1), pages 43-65, January.
    10. Schauf, Magnus & Schwenen, Sebastian, 2023. "System price dynamics for battery storage," Energy Policy, Elsevier, vol. 183(C).
    11. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    12. Ghorbani, Narges & Aghahosseini, Arman & Breyer, Christian, 2020. "Assessment of a cost-optimal power system fully based on renewable energy for Iran by 2050 – Achieving zero greenhouse gas emissions and overcoming the water crisis," Renewable Energy, Elsevier, vol. 146(C), pages 125-148.
    13. Hsieh, I-Yun Lisa & Pan, Menghsuan Sam & Chiang, Yet-Ming & Green, William H., 2019. "Learning only buys you so much: Practical limits on battery price reduction," Applied Energy, Elsevier, vol. 239(C), pages 218-224.
    14. Zhang, Xi & Geng, Yong & Shao, Shuai & Dong, Huijuan & Wu, Rui & Yao, Tianli & Song, Jiekun, 2020. "How to achieve China’s CO2 emission reduction targets by provincial efforts? – An analysis based on generalized Divisia index and dynamic scenario simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    15. Gallego-Castillo, Cristobal & Heleno, Miguel & Victoria, Marta, 2021. "Self-consumption for energy communities in Spain: A regional analysis under the new legal framework," Energy Policy, Elsevier, vol. 150(C).
    16. Nemet, Gregory F. & Lu, Jiaqi & Rai, Varun & Rao, Rohan, 2020. "Knowledge spillovers between PV installers can reduce the cost of installing solar PV," Energy Policy, Elsevier, vol. 144(C).
    17. Hannah Förster & Katja Schumacher & Enrica De Cian & Michael Hübler & Ilkka Keppo & Silvana Mima & Ronald D. Sands, 2013. "European Energy Efficiency And Decarbonization Strategies Beyond 2030 — A Sectoral Multi-Model Decomposition," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-29.
    18. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
    19. Aghahosseini, Arman & Bogdanov, Dmitrii & Barbosa, Larissa S.N.S. & Breyer, Christian, 2019. "Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 187-205.
    20. Helm, Carsten & Mier, Mathias, 2019. "Subsidising Renewables but Taxing Storage? Second-Best Policies with Imperfect Carbon Pricing," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203539, Verein für Socialpolitik / German Economic Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:120:y:2018:i:c:p:24-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.