IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v109y2017icp96-108.html
   My bibliography  Save this article

In the transformation of energy systems: what is holding Australia back?

Author

Listed:
  • Cheung, Grace
  • Davies, Peter J.

Abstract

Australia has had a strong GDP growth rate, is endowed with a diversity of renewable energy resources yet has been unable to unshackle its dependency on fossil fuels. Our study identifies causes underlying Australia’s underachievement in its transformation towards a renewable-energy economy. We apply a combined mixed-methods case-study and multi-criteria analysis to evaluate the greenhouse gas emissions and energy targets, policies and programs of four Australian Prime Ministers between 1996 and 2015. We identify four high-impact factors that contribute to Australia’s underachievement. The Prime Minister’s political stance on climate and energy is critical in setting the direction of government. The absence of target-driven policy frameworks results in less-effective policy outcomes. Orderly and cost-effective energy system transformation requires bipartisan, strategic long-term planning and substantial capital investment to provide policy certainty and stability that can induce new investment in renewable technologies and industries. Energy policy is primarily a political and ideological issue not one driven by underlying economic conditions. Going forward, Australia must achieve a bipartisan position on climate and energy policy at both federal and state levels. This will provide long-term certainty and stability to support investment in renewable energy and so doing achieve international emission reduction obligations.

Suggested Citation

  • Cheung, Grace & Davies, Peter J., 2017. "In the transformation of energy systems: what is holding Australia back?," Energy Policy, Elsevier, vol. 109(C), pages 96-108.
  • Handle: RePEc:eee:enepol:v:109:y:2017:i:c:p:96-108
    DOI: 10.1016/j.enpol.2017.06.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151730410X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.06.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James E. Payne, 2010. "Survey of the international evidence on the causal relationship between energy consumption and growth," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 37(1), pages 53-95, January.
    2. Pezzey, John C.V. & Mazouz, Salim & Jotzo, Frank, 2010. "The logic of collective action and Australia’s climate policy," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(2), pages 1-18.
    3. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    4. Polzin, Friedemann & Migendt, Michael & Täube, Florian A. & von Flotow, Paschen, 2015. "Public policy influence on renewable energy investments—A panel data study across OECD countries," Energy Policy, Elsevier, vol. 80(C), pages 98-111.
    5. Aguirre, Mariana & Ibikunle, Gbenga, 2014. "Determinants of renewable energy growth: A global sample analysis," Energy Policy, Elsevier, vol. 69(C), pages 374-384.
    6. Frank Jotzo, 2012. "The CCEP Australia Carbon Pricing Survey 2012: Policy Uncertainty Reigns but Carbon Price Likely to Stay," CCEP Working Papers 1206, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    7. Konidari, Popi & Mavrakis, Dimitrios, 2007. "A multi-criteria evaluation method for climate change mitigation policy instruments," Energy Policy, Elsevier, vol. 35(12), pages 6235-6257, December.
    8. Paul J. Burke, 2016. "Undermined by Adverse Selection: Australia's Direct Action Abatement Subsidies," Economic Papers, The Economic Society of Australia, vol. 35(3), pages 216-229, September.
    9. Martin, Nigel & Rice, John, 2013. "The solar photovoltaic feed-in tariff scheme in New South Wales, Australia," Energy Policy, Elsevier, vol. 61(C), pages 697-706.
    10. Marques, António Cardoso & Fuinhas, José Alberto, 2012. "Are public policies towards renewables successful? Evidence from European countries," Renewable Energy, Elsevier, vol. 44(C), pages 109-118.
    11. World Bank, 2015. "World Development Indicators 2015," World Bank Publications - Books, The World Bank Group, number 21634, December.
    12. Mourmouris, J.C. & Potolias, C., 2013. "A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: A case study Thassos, Greece," Energy Policy, Elsevier, vol. 52(C), pages 522-530.
    13. Connolly, D. & Lund, H. & Mathiesen, B.V. & Pican, E. & Leahy, M., 2012. "The technical and economic implications of integrating fluctuating renewable energy using energy storage," Renewable Energy, Elsevier, vol. 43(C), pages 47-60.
    14. Neij, Lena & Astrand, Kerstin, 2006. "Outcome indicators for the evaluation of energy policy instruments and technical change," Energy Policy, Elsevier, vol. 34(17), pages 2662-2676, November.
    15. Miguel Cárdenas Rodríguez & Ivan Haščič & Nick Johnstone & Jérôme Silva & Antoine Ferey, 2014. "Inducing Private Finance for Renewable Energy Projects: Evidence from Micro-Data," OECD Environment Working Papers 67, OECD Publishing.
    16. Pitt, Lawrence & van Kooten, G. Cornelis & Love, Murray & Djilali, Ned, 2005. "Utility-scale Wind Power: Impacts of Increased Penetration," Working Papers 37009, University of Victoria, Resource Economics and Policy.
    17. Jotzo, Frank, 2012. "Australia’s carbon price," Working Papers 249401, Australian National University, Centre for Climate Economics & Policy.
    18. Simpson, Genevieve & Clifton, Julian, 2014. "Picking winners and policy uncertainty: Stakeholder perceptions of Australia's Renewable Energy Target," Renewable Energy, Elsevier, vol. 67(C), pages 128-135.
    19. Nelson, Tim & Nelson, James & Ariyaratnam, Jude & Camroux, Simon, 2013. "An analysis of Australia's large scale renewable energy target: Restoring market confidence," Energy Policy, Elsevier, vol. 62(C), pages 386-400.
    20. Elliston, Ben & Diesendorf, Mark & MacGill, Iain, 2012. "Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 45(C), pages 606-613.
    21. Elliston, Ben & Riesz, Jenny & MacGill, Iain, 2016. "What cost for more renewables? The incremental cost of renewable generation – An Australian National Electricity Market case study," Renewable Energy, Elsevier, vol. 95(C), pages 127-139.
    22. Garnaut,Ross, 2008. "The Garnaut Climate Change Review," Cambridge Books, Cambridge University Press, number 9780521744447.
    23. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2013. "Least cost 100% renewable electricity scenarios in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 270-282.
    24. Tim Nelson & Stephanie Bashir & Eleanor McCracken-Hewson & Michael Pierce, 2017. "The Changing Nature of the Australian Electricity Industry," Economic Papers, The Economic Society of Australia, vol. 36(2), pages 104-120, June.
    25. Frank Jotzo & Tim Jordan & Nathan Fabian, 2012. "Policy Uncertainty about Australia's Carbon Price: Expert Survey Results and Implications for Investment," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 45(4), pages 395-409, December.
    26. Giorel Curran, 2011. "Modernising Climate Policy in Australia: Climate Narratives and the Undoing of a Prime Minister," Environment and Planning C, , vol. 29(6), pages 1004-1017, December.
    27. Zahedi, A., 2010. "A review on feed-in tariff in Australia, what it is now and what it should be," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3252-3255, December.
    28. Sivaraman, Deepak & Horne, Ralph E., 2011. "Regulatory potential for increasing small scale grid connected photovoltaic (PV) deployment in Australia," Energy Policy, Elsevier, vol. 39(2), pages 586-595, February.
    29. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    30. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2014. "Comparing least cost scenarios for 100% renewable electricity with low emission fossil fuel scenarios in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 66(C), pages 196-204.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zaman, Rafia & Brudermann, Thomas, 2018. "Energy governance in the context of energy service security: A qualitative assessment of the electricity system in Bangladesh," Applied Energy, Elsevier, vol. 223(C), pages 443-456.
    2. Harris, Patrick & Riley, Emily & Dawson, Angus & Friel, Sharon & Lawson, Kenny, 2020. "“Stop talking around projects and talk about solutions”: Positioning health within infrastructure policy to achieve the sustainable development goals," Health Policy, Elsevier, vol. 124(6), pages 591-598.
    3. Diaz-Rainey, Ivan & Sise, Greg, 2018. "Green Energy Finance in Australia and New Zealand," ADBI Working Papers 840, Asian Development Bank Institute.
    4. Jie Yang & Fu Gu & Jianfeng Guo & Bin Chen, 2019. "Comparative Life Cycle Assessment of Mobile Power Banks with Lithium-Ion Battery and Lithium-Ion Polymer Battery," Sustainability, MDPI, vol. 11(19), pages 1-24, September.
    5. Emodi, Nnaemeka Vincent & Chaiechi, Taha & Alam Beg, A.B.M. Rabiul, 2019. "Are emission reduction policies effective under climate change conditions? A backcasting and exploratory scenario approach using the LEAP-OSeMOSYS Model," Applied Energy, Elsevier, vol. 236(C), pages 1183-1217.
    6. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Convergence of energy productivity in Australian states and territories: Determinants and forecasts," Energy Economics, Elsevier, vol. 85(C).
    7. Finnerty, Noel & Sterling, Raymond & Contreras, Sergio & Coakley, Daniel & Keane, Marcus M., 2018. "Defining corporate energy policy and strategy to achieve carbon emissions reduction targets via energy management in non-energy intensive multi-site manufacturing organisations," Energy, Elsevier, vol. 151(C), pages 913-929.
    8. Farrelly, M.A. & Tawfik, S., 2020. "Engaging in disruption: A review of emerging microgrids in Victoria, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    9. Cheung, Grace & Davies, Peter J. & Bassen, Alexander, 2019. "In the transition of energy systems: What lessons can be learnt from the German achievement?," Energy Policy, Elsevier, vol. 132(C), pages 633-646.
    10. McGreevy, Dr Michael & MacDougall, Colin & Fisher, Dr Matt & Henley, Mark & Baum, Fran, 2021. "Expediting a renewable energy transition in a privatised market via public policy: The case of south Australia 2004-18," Energy Policy, Elsevier, vol. 148(PA).
    11. Geddes, Anna & Schmidt, Tobias S. & Steffen, Bjarne, 2018. "The multiple roles of state investment banks in low-carbon energy finance: An analysis of Australia, the UK and Germany," Energy Policy, Elsevier, vol. 115(C), pages 158-170.
    12. Proudlove, Richard & Finch, Sue & Thomas, Sebastian, 2020. "Factors influencing intention to invest in a community owned renewable energy initiative in Queensland, Australia," Energy Policy, Elsevier, vol. 140(C).
    13. Guidolin, Mariangela & Alpcan, Tansu, 2019. "Transition to sustainable energy generation in Australia: Interplay between coal, gas and renewables," Renewable Energy, Elsevier, vol. 139(C), pages 359-367.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheung, Grace & Davies, Peter J. & Bassen, Alexander, 2019. "In the transition of energy systems: What lessons can be learnt from the German achievement?," Energy Policy, Elsevier, vol. 132(C), pages 633-646.
    2. Lu, Bin & Blakers, Andrew & Stocks, Matthew, 2017. "90–100% renewable electricity for the South West Interconnected System of Western Australia," Energy, Elsevier, vol. 122(C), pages 663-674.
    3. Howard, Bahareh Sara & Hamilton, Nicholas E. & Diesendorf, Mark & Wiedmann, Thomas, 2018. "Modeling the carbon budget of the Australian electricity sector's transition to renewable energy," Renewable Energy, Elsevier, vol. 125(C), pages 712-728.
    4. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    5. Riesz, Jenny & Elliston, Ben, 2016. "Research and deployment priorities for renewable technologies: Quantifying the importance of various renewable technologies for low cost, high renewable electricity systems in an Australian case study," Energy Policy, Elsevier, vol. 98(C), pages 298-308.
    6. Buckman, Greg & Sibley, Jon & Ward, Megan, 2019. "The large-scale feed-in tariff reverse auction scheme in the Australian Capital Territory 2012, to 2016," Renewable Energy, Elsevier, vol. 132(C), pages 176-185.
    7. Diaz-Rainey, Ivan & Sise, Greg, 2018. "Green Energy Finance in Australia and New Zealand," ADBI Working Papers 840, Asian Development Bank Institute.
    8. Cheung, Grace & Davies, Peter J. & Trück, Stefan, 2016. "Financing alternative energy projects: An examination of challenges and opportunities for local government," Energy Policy, Elsevier, vol. 97(C), pages 354-364.
    9. Wu, Yunyang & Reedman, Luke J. & Barrett, Mark A. & Spataru, Catalina, 2018. "Comparison of CST with different hours of storage in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 122(C), pages 487-496.
    10. Trainer, Ted, 2017. "Some problems in storing renewable energy," Energy Policy, Elsevier, vol. 110(C), pages 386-393.
    11. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    12. Buckman, Greg & Sibley, Jon & Bourne, Richard, 2014. "The large-scale solar feed-in tariff reverse auction in the Australian Capital Territory, Australia," Energy Policy, Elsevier, vol. 72(C), pages 14-22.
    13. Yousefzadeh, Moslem & Lenzen, Manfred, 2019. "Performance of concentrating solar power plants in a whole-of-grid context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    15. Frank Jotzo, 2013. "Emissions Trading in China: Principles, Design Options and Lessons from International Practice," CCEP Working Papers 1303, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    16. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    17. Riesz, Jenny & Sotiriadis, Claire & Ambach, Daisy & Donovan, Stuart, 2016. "Quantifying the costs of a rapid transition to electric vehicles," Applied Energy, Elsevier, vol. 180(C), pages 287-300.
    18. Dr Barry Naughten, 2013. "Emissions Pricing, 'Complementary Policies' and 'Direct Action' in the Australian Electricity Supply Sector: 'Lock-in' and Investment," CCEP Working Papers 1304, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    19. William Paul Bell & John Foster, 2017. "Using solar PV feed-in tariff policy history to inform a sustainable flexible pricing regime to enhance the diffusion of energy storage and electric vehicles," Journal of Bioeconomics, Springer, vol. 19(1), pages 127-145, April.
    20. Elliston, Ben & Riesz, Jenny & MacGill, Iain, 2016. "What cost for more renewables? The incremental cost of renewable generation – An Australian National Electricity Market case study," Renewable Energy, Elsevier, vol. 95(C), pages 127-139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:109:y:2017:i:c:p:96-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.